Optimización aplicada al sistema de intercambio de clave segura KLJN con garantía de error máximo fijo

Edwin Collado, Yessica Sáez

Resumen


El sistema de intercambio de clave segura KLJN ha demostrado proveer seguridad incondicional de forma simple y con muy pocos componentes electrónicos. Sin embargo, este sistema presenta errores estadísticos que dependen de parámetros como la ventana de tiempo para realizar el intercambio de la clave y otros que son relevantes en la interpretación de los bits de la clave. El objetivo de este trabajo es desarrollar estrategias que permitan obtener valores óptimos de dichos parámetros, mientras se asegura que los errores se mantengan dentro de valores aceptables. Los resultados obtenidos demuestran que las técnicas de optimización propuestas no solo garantizan que los errores no sobrepasen un límite de error máximo fijo permitido, sino que también permiten manejar eficientemente los recursos del sistema al utilizar valores óptimos de los parámetros importantes en el análisis de error.

Palabras clave


Optimización, probabilidad de error, ruido de Johnson, seguridad incondicional, sistema KLJN

Texto completo:

PDF HTML

Referencias


(1) Y. Liang, H. V. Poor, and S. Shamai. “Information Theoretic Security.” Foundations and Trends in Communications and Information Theory 5, pp.355–580, Jun. 2008.

(2) W. Ford. Computer Communications Security: Principles, Standard Protocols and Techniques. Prentice-Hall, Inc, 1994.

(3) D. Stinson. Cryptography: Theory and Practice. CRC press, 2005.

(4) R. Mingesz, L.B. Kish, Z. Gingl, C.G. Granqvist, H. Wen, F. Peper, T. Eubanks, and G. Schmera. “Unconditional Security by the Laws of Classical Physics.” Metrology and Measurement Systems 20.1, pp.3–16, Mar. 2013.

(5) R. Mingesz, L. B. Kish, Z. Gingl, C.G. Granqvist, H. Wen, F. Peper, T. Eubanks, and G. Schmera. “Information Theoretic Security by the Laws of Classical Physics.” Soft Computing Applications: Proeedings of the 5th International Workshop Soft Computing Applications (SOFA), Springer Berlin- Heidelberg, pp. 11–25, 2013.

(6) L. B. Kish, D. Abbott, and C. G. Granqvist. “Critical Analysis of the Bennett-Riedel Attack on Secure Cryptographic Key Distributions via the Kirchhoff-Law-Johnson-Noise Scheme.” PLoS ONE 8.12, e81810, Dec. 2013.

(7) E. Gonzalez, L. B. Kish, and R. S. Balog. “Information Theoretically Secure, Enhanced Johnson Noise based Key Distribution over the Smart Grid with Switched Filters.” PLoS ONE 8, e70206, 2013.

(8) C. H. Bennett, G. Brassard, S. Breidbart, and S. Wiesner. “Quantum Cryptography, or Unforgeable Subway Tokens.” Advances in Cryptology: Advances in Cryptology, Plenum Press, pp. 267–275, 1982.

(9) H. P. Yuen. “On the Foundations of Quantum Key Distribution- Reply to Renner and Beyond.” Manuscript: arXiv:1210.2804, Oct. 2012.

(10) H. P. Yuen. “Unconditional Security in Quantum Key Distributions.” Manuscript: arXiv:1205.5065v2, May 2012.

(11) O. Hirota. “Incompleteness and Limit of Quantum Key Distribution Theory.” Manuscript: arXiv:1208.2106v2, Aug. 2012.

(12) R. Renner. “Reply to Recent Scepticism about the Foundations of Quantum Cryptography.” Manuscript: arXiv:1209.2423v.1, Sept. 2012.

(13) H. P. Yuen. “Security Significance of the Trace Distance Criterion in Quantum Key Distribution.” Manuscript: arXiv:1109.2675v3, Sept. 2012.

(14)H. P. Yuen. “Key Generation: Foundation and a New Quantum Approach.” IEEE Journal Selected Topics in Quantum Electronics 15 pp.1630–1645, Nov. 2009.

(15) H. Salih, Z. H. Li, M. Al-Amri, and H. Zubairy. “Protocol for Direct Counterfactual Quantum Communication.” Physical review letters 110.17 p.170502, Apr. 2013.

(16) L. B. Kish. “Totally Secure Classical Communication Utilizing Johnson (-like) Noise and Kirchhoff’s Law.” Physics Letters A 352.3, pp.178–182, Mar. 2006.

(17) R. Mingesz, Z. Gingl, and L. B. Kish. “Johnson (-like)-Noise- Kirchhoff-Loop Based Secure Classical Communicator Characteristics, for Ranges of Two to Two Thousand Kilometers, Via Model-Line.” Physics Letters A 372.7, pp.978–984, Feb. 2008.

(18) L. B. Kish and T. Horvath. “Notes on Recent Approaches Concerning the Kirchhoff-Law-Johnson-Noise-Based Secure Key Exchange.” Physics Letters A 373.32, pp.901–904, Aug. 2009.

(19) L. B. Kish and C. G. Granqvist. “On the Security of the Kirchhoff-Law-Johnson-Noise (KLJN) Communicator.” Quantum Information Processing 13.10, pp.2213-2219, Oct. 2014.

(20) D. Abbott and G. Schmera. “Secure Communications Using the KLJN Scheme.” Scholarpedia 8.8, p.31157, Aug. 2013.

(21) L. B. Kish. “Protection Against the Man in the Middle attack for the Kirchhoff-Loop Johnson(-like)-Noise Cipher and Expansion by Voltage-Based Security.” Fluctuation and Noise Letters 6.01, pp.L57-L63, Mar. 2005.

(22) L. B. Kish. “Enhanced Secure Key Exchange Systems Based on the Johnson-Noise Scheme.” Metrology and Measurement Systems 20.2 pp. 191-204, Jun. 2013.

(23) L. B. Kish and C. G. Granqvist. “On the Security of the Kirchhoff-Law-Johnson-Noise (KLJN) Communicator.” Quantum Information Processing, 13.10, pp.2213-2219, Oct. 2014.

(24) L. B. Kish. “Enhanced Usage of Keys Obtained by Physical, Unconditionally Secure Distributions.” Manuscript: http://arxiv.org/abs/1408.5800, 2014.

(25) T. Horvath, L.B. Kish, and J. Scheuer. “Effective Privacy Amplification for Secure Classical Communications.” Europhysics Letters (EPL) 94.2, p.28002, Apr. 2011.

(26) Y. Saez, X. Cao, L. B. Kish, and G. Pesti. “Securing Vehicle Communication Systems by the KLJN Key Exchange Protocol.” Fluctuation and Noise Letters 13, p.1450020, Sep. 2014.

(27) X. Cao, Y. Saez, L. B. Kish, and G. Pesti. “On KLJN-Based Secure Key Distribution in Vehicular Communication Networks.” Fluctuation and Noise Letters 14, p.1550008, Mar. 2015.

(28) L. B. Kish and R. Mingesz. “Totally Secure Classical Networks with Multipoint Telecloning (Teleportation) of Classical Bits Through Loops with Johnson-Like Noise.” Fluctuation and Noise Letters 6.02, pp.C9–C21, Jun. 2006.

(29) L. B. Kish and O. Saidi. “Unconditionally Secure Computers, Algorithms and Hardware, such as Memories, Processors, Keyboards, Flash and Hard Drives.” Fluctuation and Noise Letters 8.02, pp.L95-L98, Jun. 2008.

(30) Y. Saez and L. B. Kish. “Errors and their Mitigation at the Kirchhoff-Law-Johnson-Noise Secure Key Exchange.” PLoS ONE 8.11, p.e81103, Nov. 2013.

(31) Y. Saez, L. B. Kish, R. Mingesz, Z. Gingl, and C. G. Granqvist. “Current and Voltage Based Bit Errors and their Combined Mitigation for the Kirchhoff-Law–Johnson-Noise Secure Key Exchange.” Journal of Computational Electronics 13.1, pp.271-277, Mar. 2014.

(32) Y. Saez, L. B. Kish, R. Mingesz, Z. Gingl, and C. G. Granqvist. “Bit Errors in the Kirchhoff-Law-Johnson-Noise Secure Key Exchange.” International Journal of Modern Physics Conference Series 33, p.1460367, 2014.

(33) L. B. Kish, R. Mingesz, Z. Gingl, and C. G. Granqvist. “Spectra for the Product of Gaussian Noises.” Metrology and Measurement Systems, 19(4), pp.653-658, 2012.

(34) S. O. Rice. “Mathematical Analysis of Random Noise.” Bell Labs Technical Journal 23.3, pp.282-332, 1944.

(35) I. Rychlik. “On Some Reliability Applications of Rice’s Formula for the Intensity of Level Crossings.” Extremes 3.4, pp.331-348, Dec. 2000.

(36) L. B. Kish. “End of Moore's Law; Thermal (Noise) Death of Integration in Micro and Nano Electronics.” Physics Letters A 305.3, pp.144–149, Dec. 2002.

(37) L. B. Kish and C. G. Granqvist. “Electrical Maxwell Demon and Szilard Engine Utilizing Johnson Noise, Measurement, Logic and Control.” PLoS ONE 7, p.e46800, 2012.

(28) S. Boyd and L. Vandenberghe. Convex optimization. Cambridge Univ. Press, Cambridge, UK: Cambridge UniversityPress.






Copyright (c) 2017 I+D Tecnológico

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Indexado y Catalogado en:

DRJI Indexed Journal





© 2016 Portal de Revistas de la Universidad Tecnológica de Panamá
Este sitio es un componente del proyecto UTP-Ridda2
Utilizando Open Journal Systems