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Vehículo aéreo no tripulado para medición de flujos atmosféricos

 
Abstract—A simpli!ed model of the hovercraft is used 
having three degrees of freedom and the control is considered 
as having two inputs.  This paper addresses the control law 
problem by reformulating the problem in terms of a direct 
Lyapunov approach whose derivation is performed using 
the symbolic manipulation program Maple. The proposed 
solution for this controller design formulation uses the 
control law instead of inverse dynamics to determine the 
coordinate histories for the unspeci!ed axes, and represents 
a novel approach for the control of the underactuated system 
such that the control law could stabilize both the actuated 
and underactuated axes. Simulation of the model is carried 
out in the MATLAB/Simulink environment, bringing a new 
effective method to solve the control problem of the hovercraft, 
which is a dif!cult system to control because its movement is 
subjected to nonholonomic constraints.

Keywords—controller, hovercraft, Lyapunov, model, 
movement,   nonholonomic,  underactuated.

Resumen—Se presenta un modelo simpli!cado del 
aerodeslizador utilizando tres grados de libertad y considerando 
el control como uno de dos entradas. En este trabajo se aborda 
el problema de la ley de control reformulando el problema en 
términos de un enfoque directo de Lyapunov cuya derivación 
se realiza utilizando el programa de manipulación simbólica 
Maple. La solución propuesta para esta formulación diseño del 
controlador utiliza la ley de control en lugar de la dinámica 
inversa para determinar el historial de coordenadas para 
los ejes no especi!cados, y representa un enfoque novedoso 
para el control del sistema de subactuado de tal manera que 
la ley de control podría estabilizar tanto al eje actuado como 

al subactuado. Simulación del modelo se lleva a cabo en el 
entorno MATLAB / Simulink, con lo que un nuevo método 
e!caz para resolver el problema de control del aerodeslizador, 
que es un sistema difícil de controlar debido a su movimiento 
se somete a restricciones no holonómicos.

Palabras Claves— controlador, aerodeslizadores, Lyapunov, 
modelo, movimiento, no holonómica, subactuado.
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1.Introduction  

The use of unmanned vehicles (UVs) gains 
interest due to the various applications that 
UVs provide as solutions to the many needs 

of society. 
 Compared with traditional UVs, the hovercraft 
provides faster speeds for running on water, ice, 
and land surfaces. A control law for the asymptotic 
stabilization of an unmanned hovercraft is 
accomplished by 5nding the solution of matching 
conditions that arise from Lyapunov’s second 
method, analogous to the dissipation of energy, 
[1].  A simpli5ed model of the hovercraft is used 
having three degrees of freedom and the control is 
considered as having two inputs.  This controller 
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design formulation is exact without introducing 
approximations, and it is proposed to determine 
the coordinate histories for the unspeci5ed axes, 
such that the control law could stabilize both the 
actuated and underactuated axes [2].  
 A new method will be tested and developed 
under different conditions, in order to achieve high 
performance and a stable hovercraft prototype 
given that the hovercraft is not actuated in the 
lateral direction.  Figure 1 shows the details of the 
prototype craft, [3].

Figure 1. Unmanned Hovercraft schematic.

 The hovercraft consists of fans and a cushion 
where air pressure inside the cushion enables it 
to 6oat and move smoothly on any surface. The 
pressure inside the cushion needs to be maintained 
at all times, whereas the lift fan is able to operate 
for long periods and in all types of climates to 
ensure the hovercraft can move forward at certain 
speeds. Furthermore, the unmanned hovercraft 
has less friction due to the air pressure inside the 
hovercraft’s cushion. This air reduces the friction 
between land or water surfaces that have direct 
contact with the hovercraft’s skirt. This system can 

also be launched from any place, whereas a larger 
vehicle cannot. Some disadvantages when using 
hovercrafts are that they require a lot of air and 
are loud due to fan or propeller rotation during 
their operation. In addition, the hovercraft has the 
potential to damage its skirt or cushion.
 The main challenge when designing controls 
for underactuated systems is the non-linearity of 
the equations of motion that govern the dynamics, 
together with the manipulation of those equations 
so that a controller can be found.  The application 
of any method is in general a rather dif5cult task, 
because getting the needed controller involves 
solving ordinary and partial differential equations.  
Generally, control strategies for the stabilization 
of underactuated systems can be found in 
the literature. Some of the previous studies 
conducted by several researchers on stabilizing the 
underactuated unmanned hovercraft system are 
mentioned and analyzed below. 
 In the hovercraft modeled by [4], the design 
consists of one powerful hovering motor and 
four horizontally mounted propulsion motors. 
A microcontroller acquired input data from the 
sensors and provided outputs signals to vary the 
speed of each motor and then perform the necessary 
stabilization. To this work, the proportional integral 
derivative (PID) controller was designed to control 
the hovercraft.
 The nonholonomic autonomous underactuated 
underwater vehicle (AUV) modeled by [5] consists 
of regulating the dynamic model in the horizontal 
plane to a point with a desired orientation. A 
discontinuous, adaptive state feedback controller is 
derived that yields convergence of the trajectories 
of the closed loop system in the presence of 
parametric modeling uncertainty. To this work, 
the formulation of the Lyapunov-based, adaptive, 
smooth control law was applied.
 In the paper by [6, 7] the vehicle was designed 
with two different control strategies for stabilizing 
the surge, sway and angular velocities with 
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different controllers. The authors used the surge 
force and the angular torque as inputs to the 
system. In addition, the mathematical model was 
derived based on Newton’s Second Law and Euler-
Lagrange. A Lyapunov controller formulation was 
used. 
 In [8], the author used an amphibious 
hovercraft, the Electro Cruiser, as his experimental 
model. An electric motor was used to drive both 
propellers and another one of the propellers to 
provide lift by keeping a low pressure air cavity 
inside the skirt. The dynamical model for the 
hovercraft was derived using the Newton-Euler 
method. The controller strategy was not tested.
In the paper done by [9], the nonlinear control 
was used to study an amphibious hovercraft. Here 
the hydrodynamic and aerodynamic coef5cients 
with speed roll angle and sideslip angle were 
considered. They introduced an adaptive multiple 
model approach to acquire a linearized model of 
the hovercraft setting some work points according 
to ship speed with local controllers, and switch 
rule bases on weighting methods.
 In the work presented at [10], a remote controlled 
hovercraft was modeled using Newton’s Second 
Law where the hovercraft had two thrust fans and 
another one for lift providing two separate sources 
of input. An open loop and closed loop behavior of 
the system was simulated in Simulink. The author 
mentioned that the mathematical model was 
successfully and accurately controlled. 
 The previous work using Direct Lyapunov 
Approach (DLA) presented in [11, 12, 13] is 
taken as the starting point of this formulation 
for the design of the stabilizing nonlinear control 
law of underactuated hovercraft systems.  The 
attractiveness of the DLA used in the formulation is 
that this method offers a wider range of applications 
and the obtained linear algebraic equations (LAEs), 
ordinary differential equations (ODEs), and partial 
differential equations (PDEs) are more tractable 
than those obtained with early methods applied for 

the controller design of underactuated mechanical 
systems, [14].   
 The objective of this work was to apply the 
Direct Lyapunov Approach based method to 
control an unmanned hovercraft system.  The 
Lyapunov stability was performed and simulated 
to illustrate the ef5cacy of the designed control law.  

2. Dynamic and Modeling Analysis of the 
System
 The dynamic equations of motion governing 
the behavior of the autonomous hovercraft with 
holonomic constraints are determined from the 
Euler-Lagrange equations, namely,     

                      (1)

 
where             represents the vector of the 
generalized      coordinates,     with     x ,       y        and    iiiiiii   
representing the generalized hovercraft position 
and orientation in the earth 5xed coordinates.       , 
and           represent velocities and accelerations, 
respectively, for the n=3 degrees of freedom of the 
hovercraft system.                                     is   the 
Lagrangian de5ned as the kinetic energy minus 
the potential energy of the system. The right-hand 
side of Eq. (1), speci5ed as              , consists of the 
actuation for the degrees of freedom. It is assumed 
that the degrees of freedom are ordered so that the 
5rst m elements of the right side vector contain the 
nonzero inputs. For an underactuated system, only 
m of the inputs are nonzero where        .  In the 
dynamic equations of motion (1),                            is 
the  positive  de5nite  mass  and/or inertia matrix,               
                 consists of centripetal and Coriolis
forces and/or moments, and                     consists of 
forces and/or moments stemming from gradients 
of conservative 5elds.
 The requirement of the control law is to 
stabilize the system and in order to achieve this, 
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the Lyapunov second method is applied for its 
development. 
The control challenge arises from the nonlinear 
nature of the governing equations and the 
underactuation. The candidate Lyapunov function 
is made of intrinsically positive quantities, part of 
which is described as a quadratic matrix product, 
[15].  The goal of this effort is to use a trial Lyapunov 
function

                                                                                (2)

where                                            is the candidate  
Lyapunov function,           is a real scalar potential 
function of the generalized coordinates, and 
where                        is a symmetric, positive 
matrix de5ned as the product

                       (3)

where                         is a matrix de5ned so that 
  has the previously mentioned speci5ed 
properties.    
 The time derivative of the candidate function 
is made non-positive and this concept is the basis 
for the Lyapunov application to nonlinear control 
problems.    The time derivative of Eq. (2), together 
with the equations of motion results in an equation 
that is solved by a matching method.  When this 
method is applied, the quadratic terms in the 
velocities are grouped together obtaining a set 
of linear ordinary differential equations (ODEs).  
These equations are called the 5rst matching 
condition, [15].
 Grouping linear terms in the velocities results 
in linear algebraic equations (LAEs) and these 
equations are called the second matching condition.  
 The third matching condition involves only 
position coordinates resulting in linear partial 
differential equations (PDEs). This methodology 
is called the direct Lyapunov approach (DLA). The 
attractiveness of the DLA used in the formulation is 

that this method offers a wider range of applications 
and the obtained LAEs, ODEs, and PDEs are more 
tractable than those obtained with early methods 
applied for the controller design of underactuated 
mechanical systems.

3. Hovercraft Model
Figure 2 shows the geometry of the hovercraft. 
Considering a local inertial system implies 
neglecting Coriolis forces induced by the rotation 
of the earth and consider the earth as a system 
locally 6at.  From the Figure 2 x, y and  represent 
the generalized position and orientation in the 
earth 5xed coordinates. 

 
Figure 2. The simpli5ed Hovercraft Model.

 The kinematics in the inertial [16, 17, 18, 
19] system that involves the hovercraft can be 
expressed as

                     (4)

Manipulating and rearranging terms from Eq. (4)

                       
              (5)
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where u is the surge velocity vector, v is the sway 
velocity vector, and r is the yaw angular velocity 
vector. 

The Euler-Lagrange equation for this system is 
        
              (6)

where F denotes the control force in the surge 
direction and   denotes the control torque in 
yaw. The control torque is a function of F and its 
perpendicular distance from the center of the fan 
to the center of mass of the hovercraft.
 Note that in order to obtain a simple model 
capturing essential nonlinearities of the hovercraft, 
the inertia matrix was assumed to be diagonal 
and constant. If  M is constant, the Coriolis 
and centripetal matrix is equal to zero. The 
hydrodynamic damping was cancelled given that 
it is not used in controlling the system. 
 To use a direct Lyapunov method for designing 
a control law, [20, 21, 22], the time derivative of Eq. 
(2) is computed and it produces

                                      
               
                                                                 
                                            (7)
 
 

 Following the procedures of [11], we decompose 
Eq. (7) into three matching equations.  Since the   
is a constant matrix this leads to  

              (8)

 The Second Matching Equation, after expressing 
F as                 and rearranging the          terms, is
                                                               

             
                                     (9)

for which the solution is
                      
                                                                                   (10)

where the     are constants chosen so that Kv is 
positive semi-de5nite and Pi is the ith column of 
P(q).  
 The control law contribution from the second 
matching condition is the product of  F1 and     .
 The third matching equation is stated as, 
where the 5rst m equations in Eq. (6) are used to 
determine the control law contribution   while the 
last n – m rows of the equation provide linear, 5rst 
order partial differential equations for the potential 
as seen in

                                                                                    (11)

where G=0 
 In taking the time derivative of the candidate 
Lyapunov function, the potential  is assumed 
to be a function of the generalized positions q 
alone.  At this time it is important to mention that 
the potential is also needed. In order to assure 
the stability condition of the system, the Hessian 
of the potential must be positive de5nite. The 
Hessian which denotes the second derivative 
of the potential with respect to the generalized 
coordinates, is given by�KDM q( )�1M q( )�1KD = 0. �K = 0
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           (12)

and the necessary condition on        is
                                                      
           (13)
 
 In order to guarantee that Eq. (12) is a positive 
de5nite matrix, its eigenvalues are required to all 
be positive. The method to solve the third matching 
equation is similar to the matching equations 
developed for stabilization as shown in [15].
 The different parameters are chosen such that 
the eigenvalues of the linearized system are the 
same as those chosen for stabilization.  
 The Hessian of the potential is tested so that 
the potential is concave upward at the equilibrium 
point. It is a convenient way to choose the 
parameters.  The stabilization will be achieved 
once all the mentioned constrains are satis5ed.  
Lyapunov also needs to be tested. Testing the 
control law through simulation will verify the 
reliability of the process.  To simulate the systems, 
the quantities of                   ,  the potential, the control 
inputs, and the coef5cients are brought from Maple 
to MATLAB.  The control design is 5rst done in 
Maple.  

4. System Model Results
 The control law design method is applied to the 
hovercraft system in order to drive the states from a 
given initial condition to the origin and stabilizing 
them at that point.  Numerical simulation, done 
using MATLAB, con5rms that the nonlinear 
control law stabilizes the system. The simulation 
results presented in the plots of Figure 3 and Figure 
4 illustrate the hovercraft position and velocity as 
well as the orientation angle and angular velocity 
as a function of time, respectively.

Figure 3. Stabilization of the Hovercraft (Generalized 
position and orientation).

Figure 4. Velocity variables for Stabilization of the 
Hovercraft.
 
 The following 5gures show the Lyapunov 
function performance and its 5rst time derivative, 
as well as the control law.

Figure 5. Hovercraft  Potential (x-y plane).
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 Figure 6 presents a 3D plot of the potential for 
the interval (-100, 100) for     and (-100, 100) for y.  
The proper shape of the potential is demonstrated 
for the hovercraft stabilization.

 
Figure 6. Hovercraft  Potential (y-      plane).

 The following 5gures show the Lyapunov 
function performance and its 5rst time derivative, 
as well as the control law. 

Figure 7. Lyapunov Time History.
 
 The behavior shown in Figures 7 and 8 
demonstrate the validity of the Lyapunov 
candidate function candidate function because 
it is monotonically decreasing with time for the 
hovercraft stabilization.
 

Figure 8. Lyapunov Time Derivative.

 The behavior of the control law to stabilize the 
hovercraft system is shown in Figure 9 and Figure 
10 for F and       , respectively.  Simulation results are 
presented to illustrate the ef5cacy of the designed 
control law.

Figure 9. Control Law (F)

Figure 10. Control Law (    ).
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5. Conclusions and Future Work
 This work introduces methods as applied to a 
hovercraft that can be used to simulate the behavior 
of the underactuated system with three degrees of 
freedom and two control inputs. 
 A scheme based on a Lyapunov approach to 
stabilize the surge, sway, and angular velocity of 
yaw has been proposed to design a controller.
 The simulated model was used to test the 
control law showing the best stability performance.  
Using the design control law on a prototype within 
a microcontroller Arduino, different disturbances 
affecting the stability of the system have been 
tested. 
 Modeling and control technologies are 
required to assure that the prototype will perform 
safely, reliably, and robustly in the presence of 
disturbances and weight rising. This part of the 
work is currently in progress. 
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