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RESUMEN. El anilisis de datos dmicos es esencial en la biologia moderna, pero la complejidad técnica de las herramientas
bioinformaticas sigue siendo una barrera para quienes no poseen formacion en programacion. Este trabajo tuvo como objetivo
demostrar que es posible realizar un analisis completo de microARNs utilizando Unicamente Galaxy, como estrategia pedagdgica
para acercar a estudiantes de ciencias bioldgicas al analisis bioinformatico. Se analizaron seis muestras de tejido cerebral humano,
tres fetales y tres adultas, obtenidas de un repositorio publico. El flujo de trabajo incluyé control de calidad con FastQC, eliminacion
de adaptadores con Cutadapt, alineamiento al genoma humano con HISAT?2 y cuantificacion de lecturas con featureCounts. El
andlisis de expresion diferencial se realizé con DESeq2. Se obtuvieron altos porcentajes de mapeo (87-93 %) y asignacion confiable
de lecturas a miRNAs conocidos. El analisis de componentes principales mostr6 una separacion clara entre fetales y adultos, mientras
que los mapas de calor confirmaron la consistencia de las réplicas y las diferencias entre regiones cerebrales. El histograma de valores
p y las estimaciones de dispersion reflejaron patrones tipicos de RNA-seq, y el MA-plot permitié identificar miRNAs
diferencialmente expresados entre ambos grupos. El uso de Galaxy posibilité completar el analisis sin necesidad de programacion ni
infraestructura avanzada, resaltando su valor como herramienta didactica para la ensefianza de analisis de datos 6micos. En
conclusion, este estudio evidencia que es posible implementar un flujo reproducible y accesible para la caracterizacion de perfiles de
microARNSs, ofreciendo un recurso pedagdgico para la formacion practica en bioinformatica.
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ABSTRACT. Omics data analysis has become a cornerstone of modern biology, yet the technical complexity of bioinformatics
tools remains a significant barrier for students and researchers without programming expertise. This study aimed to demonstrate that
a complete microRNA workflow can be carried out entirely within the Galaxy platform, as a pedagogical strategy to make
bioinformatics more accessible in the life sciences. Six human brain tissue samples—three fetal and three adult—were obtained from
a public repository and analyzed. The workflow included quality control with FastQC, adapter trimming with Cutadapt, alignment
to the human genome using HISAT2, and read quantification with featureCounts. Differential expression analysis was conducted
with DESeq2. The pipeline achieved high mapping rates (87-93%) and consistent assignment of reads to known miRNAs. Principal
component analysis revealed clear separation between fetal and adult groups, while heatmaps confirmed the reproducibility of
biological replicates and differences across brain regions. Additional outputs, including p-value distributions, dispersion estimates,
and MA-plots, reflected typical RNA-seq patterns and highlighted sets of miRNAs with significant differential expression. By
leveraging Galaxy, the entire analysis was completed without the need for programming skills or advanced computing infrastructure,
underscoring its value as a teaching tool for omics data analysis. In conclusion, this study demonstrates that a reproducible and
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accessible workflow for microRNA profiling can be implemented in Galaxy, offering a practical educational resource for

bioinformatics training.
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1. Introduccion

El avance acelerado de las tecnologias de
secuenciacion de nueva generacion ha generado una
explosion en la produccion de datos bioldgicos a gran
escala, dando origen a lo que hoy se conoce como la era
de los datos 6micos. En este nuevo panorama, disciplinas
como la gendmica, transcriptomica, epigendmica y
metagendmica  han incorporado herramientas
computacionales como parte esencial de sus flujos de
trabajo. El andlisis de estos datos requiere habilidades
especificas en bioinformatica, un campo que combina
conocimientos de biologia molecular con competencias
en programacion, estadistica y manejo de datos. Esta
realidad ha creado una brecha significativa entre la
generacion de datos y su interpretacion, especialmente en
contextos académicos donde muchos estudiantes y
docentes no cuentan con formacion computacional
formal. De hecho, se ha sefialado que la mayoria de los
estudiantes de ciencias biologicas completan sus estudios
sin haber recibido formacion alguna en bioinformatica o
biologia computacional [1]. En consecuencia, existe un
consenso creciente sobre la necesidad de integrar la
bioinformatica como un componente esencial en la
educacion en ciencias de la vida [2].

En este contexto, si bien la bioinformatica ha sido
reconocida como una competencia clave para la
investigacion moderna, su incorporacion efectiva en
entornos educativos aun presenta desafios importantes.
Muchos estudiantes de ciencias bioldgicas no cuentan
con formacion previa en programacion, lo que limita su
habilidad para interactuar con herramientas comunes en
analisis oOmicos (R, Python, entornos Linux). La
integracion de la bioinformatica en los planes de estudio
de pregrado contintia siendo insuficiente: en una encuesta
nacional realizada en EE. UU., mas del 70 % de los
docentes reportaron enfrentar barreras para incorporar la
bioinformatica en sus cursos, identificando como
principales desafios la falta de formacion técnica entre
los estudiantes y la escasez de tiempo para reestructurar
los contenidos curriculares [3]. Otro estudio descubrid

que el obstaculo mas frecuente informado por 1260
profesores fue la falta de experiencia o formacion
docente en bioinformatica, seguido por otros factores
como la saturacion del curriculo y la preparacion
insuficiente de los estudiantes [4].

A estos retos se suma la complejidad técnica que
implica instalar y configurar softwares bioinformaticos
especializados, asi como la necesidad de recursos
computacionales que muchas universidades,
especialmente en América Latina, no poseen debido a
limitaciones presupuestarias persistentes [5]. La
dispersion de la documentacién técnica, a menudo
redactada en un lenguaje poco accesible para
principiantes, y la falta de acompanamiento docente
capacitado agravan ain mas el problema [6]. En
consecuencia, muchos estudiantes perciben la
bioinformatica como un campo inaccesible o reservado
exclusivamente a expertos, lo cual restringe su
participacidon en proyectos reales de analisis de datos
desde etapas tempranas de su formacion.

Uno de los campos que ilustra claramente esta brecha
es el estudio de los microARNs (miRNAs). Los miRNAs
son pequeflas moléculas de ARN no codificante, con una
longitud de aproximadamente 22 nucledtidos, que
regulan la expresion génica a nivel postranscripcional
[7], [8]. Actiian uniéndose a ARN mensajeros (mMRNA)
diana, lo que puede provocar su degradacion o inhibir su
traduccion sin necesidad de degradarlos [9], [10]. Debido
a su papel central en procesos celulares como
proliferacion, diferenciacion, muerte celular y sinapsis
neuronal, los miRNAs se han convertido en
biomarcadores clave en cancer, enfermedades
neurodegenerativas, enfermedades cardiovasculares,
entre otras [11], [12].

El andlisis de miRNA implica un flujo de trabajo
bioinformatico multifactorial: desde control de calidad y
recorte de adaptadores, hasta alineamiento de lecturas,
cuantificacion y analisis de expresion diferencial. Esto
requiere ejecutar herramientas, normalmente, en
entornos de linea de comandos [13].



Este nivel de complejidad convierte al analisis de
miRNAs en un caso emblematico para mostrar la
accesibilidad pedagdgica de una plataforma como
Galaxy, donde todos estos pasos pueden realizarse
mediante interfaces visuales, sin escribir una sola linea
de codigo [14].

Ademas de simplificar el proceso técnico, Galaxy
favorece la colaboracion y la transparencia cientifica al
permitir que los flujos de trabajo sean compartidos,
reutilizados y adaptados por otros usuarios [15]. Su
interfaz grafica, combinada con el acceso a recursos
computacionales en la nube, elimina la necesidad de
contar con equipos de alto rendimiento o conocimientos
avanzados en administracion de sistemas [14]. Esto es
especialmente relevante en instituciones con recursos
limitados, donde la adquisicion y mantenimiento de
infraestructura computacional avanzada no siempre es
viable. En tales contextos, el uso de plataformas abiertas
y alojadas en servidores externos, como Galaxy, permite
que estudiantes y docentes accedan a herramientas
bioinformaticas de alto nivel sin incurrir en costos
adicionales, superando asi una de las principales barreras
para la ensefianza practica en analisis 6micos [15]. De
esta manera, Galaxy no solo reduce las barreras técnicas
de entrada, sino que también promueve una ensefianza
basada en proyectos reales, facilitando que los
participantes se concentren en la interpretacion biologica
de los resultados mas que en la resolucion de problemas
de infraestructura o configuracion.

El presente articulo tiene como objetivo demostrar
como puede desarrollarse un analisis completo de
miRNAs utilizando exclusivamente Galaxy, desde datos
publicos hasta la obtencion de resultados interpretables.
Se propone este enfoque como una estrategia practica y
pedagbgica para introducir a estudiantes de ciencias
biologicas en el mundo de la bioinformatica, superando
las barreras técnicas tradicionales. A través de un caso de
estudio real y reproducible, se busca mostrar que el
analisis de datos Omicos puede estar al alcance de
estudiantes con conocimientos basicos, promoviendo una
formacion mas integrada, moderna y participativa.

2. Materiales y Métodos

Para este estudio se utilizaron datos publicos de
secuenciacion de ARN pequefios (SRNA-seq) de tejido
cerebral humano, correspondientes al proyecto
PRIEB71709, disponible en el repositorio European
Nucleotide Archive (ENA):

https://www.ebi.ac.uk/ena/browser/view/PRJEB71709.

La eleccion de este conjunto de datos se baso en su
disponibilidad publica, la inclusiéon de lecturas crudas y
la relevancia para el analisis bioinformatico de miRNAs
en un contexto educativo.

Todo el procesamiento y analisis se llevo a cabo en la
plataforma Galaxy (https://usegalaxy.org/), empleando
unicamente herramientas disponibles en su interfaz
grafica. El flujo de trabajo incluy6 el control de calidad
de las lecturas con FastQC [16], cuyos reportes
individuales fueron integrados mediante MultiQC [17].
Posteriormente, se realizé el recorte de adaptadores con
Cutadapt [18], el alineamiento de lecturas con HISAT2
[19], y la cuantificacion de miRNA con featureCounts
[20] empleando anotaciones GFF3 de miRBase (version
22.1) [21]. Finalmente, el analisis de expresion
diferencial se llevo a cabo con DESeq2 [22].

2.1 Carga de archivos a la plataforma

Los archivos FASTQ correspondientes a las muestras
seleccionadas del proyecto PRJEB71709 fueron
obtenidos desde el repositorio ENA. Se seleccionaron
tres muestras de tejido cerebral fetal (ERR12409245,
ERR12409249, ERR12409251) y tres muestras de tejido
cerebral adulto (ERR12409217, ERR12409229,
ERR12409239), con el objetivo de ilustrar el analisis
comparativo de perfiles de miRNA en dos grupos
biologicos distintos.

Para la importacion de los datos, se utilizaron los
enlaces directos a los archivos FASTQ comprimidos
(formato fastq.gz) disponibles en la pagina del proyecto
en ENA. Dichos enlaces fueron copiados y pegados en la
opcion Paste/Fetch data de la herramienta Upload Data
de Galaxy, lo que permiti6 cargar los datos directamente
desde la fuente sin necesidad de descargarlos
previamente al equipo local.

Una vez cargados, los archivos se renombraron y
agruparon en una coleccion dentro de Galaxy, lo que
facilité su manejo como un inico conjunto y permitié que
todas las muestras fueran procesadas en bloque durante
cada paso del flujo de trabajo. Los archivos se
mantuvieron en su formato comprimido original (gzip),
dado que Galaxy es compatible con su lectura directa,
optimizando asi tanto el wuso de espacio de
almacenamiento como el tiempo de transferencia.

2.2 Evaluacion de calidad y limpieza de secuencias

El control de calidad inicial de las secuencias crudas,
agrupadas en la coleccion generada en el paso anterior,
se realizo con la herramienta FastQC (Galaxy version



0.74) utilizando la configuracion predeterminada. Este
analisis permitio identificar la presencia de adaptadores
remanentes en las lecturas.

Para la eliminacion de adaptadores y el filtrado de
secuencias se emple6 Cutadapt (Galaxy version 5.1),
aplicando la herramienta sobre la coleccion de datos
crudos. En la opcion Custom 3’ adapter sequence, se
especificO manualmente la secuencia adaptadora
estandar para bibliotecas de sRNA en plataformas
[llumina (TGGAATTCTCGGGTGCCAAGG), con el
fin de asegurar su remocion completa.

Se establecio un quality cutoff (RI1) de 20, valor que
corresponde a una probabilidad de error de 1 en 100
(calidad Phred Q20), considerado un umbral estandar
para asegurar lecturas de alta calidad en estudios de
expresion génica. Adicionalmente, se definid un rango de
longitudes entre 18 y 26 nucledtidos (minimum length
(R1) = 18; maximum length (R1) = 26), con el objetivo
de conservar secuencias correspondientes a miRNAs
maduros, los cuales suelen presentar longitudes de entre
18 y 24 nucledtidos [7].

Tras el recorte, se generd un segundo reporte de
FastQC para verificar la eliminacion de adaptadores y la
mejora en los perfiles de calidad, confirmando que las
lecturas procesadas eran aptas para las etapas posteriores
de alineamiento y cuantificacién. Finalmente, los
resultados individuales de FastQC fueron integrados
mediante MultiQC (Galaxy version 1.27), lo que
permiti6é obtener un reporte consolidado y visualizar de
forma conjunta las métricas de las seis muestras.

2.3 Mapeo y conteo de lecturas

El mapeo de la coleccion de secuencias obtenida tras
el procesamiento con Cutadapt se realizo utilizando
HISAT2 (Galaxy version 2.2.1) con la configuracion
predeterminada, empleando como referencia el genoma
humano (GCF_000001405.40) disponible en la propia
plataforma Galaxy. Durante este paso se habilitd la
generacion de un archivo resumen con las estadisticas de
alineamiento para su posterior revision.

La cuantificacion de las lecturas alineadas se llevo a
cabo con la herramienta featureCounts (Galaxy version
2.1.1), empleando como archivo de anotacion un GFF3
especifico para miRNAs de Homo sapiens, importado
desde miRBase mediante la opcion Paste/Fetch data de
Galaxy (https://www.mirbase.org/download/hsa.gff3).

En la opcion Gene annotation file se selecciond “A
GFF/GTF file in your history”, indicando el archivo .gff3
previamente importado. Se configur6 el parametro GFF
feature type filter como “miRNA” y el GFF gene

identifier como “Name”. Para la asignacion de lecturas
se activo la opcion “-M -O”, que incluye tanto lecturas
multi-mapping como multi-overlapping, dado que en el
analisis de miRNAs estas situaciones son comunes y
bioldgicamente relevantes [23].

Este procedimiento permiti6 generar, para cada
muestra, un archivo de conteos por cada miRNA anotado
en el archivo de referencia. Dichos archivos fueron
utilizados directamente en el andlisis de expresion
diferencial posterior sin necesidad de combinarlos
previamente.

2.4 Analisis de expresion diferencial

Previo al analisis, se editaron los nombres de los
archivos de conteos generados en la etapa anterior, de
manera que coincidieran con las etiquetas que se
mostrarian en las representaciones graficas posteriores.
El analisis de expresion diferencial se llevo a cabo
utilizando la herramienta DESeq2 (Galaxy version
2.11.40.8). En la opcion How se selecciond “select
datasets per level”, definiendo el factor experimental
como “Edad”. Para el Factor level 1 (Fetal) se
seleccionaron los tres archivos de conteos
correspondientes a las muestras fetales, mientras que
para el Factor level 2 (Adult) se seleccionaron los tres
archivos de conteos correspondientes a las muestras
adultas. Todos los deméas parametros se mantuvieron en
su configuracioén predeterminada.

3. Resultados y discusion

En esta seccion se presentan los resultados obtenidos a
lo largo del flujo de trabajo implementado en Galaxy,
desde el control de calidad de las lecturas crudas hasta el
analisis de expresion diferencial de miRNAs entre
muestras de tejido cerebral fetal y adulto. Cada etapa se
acompaia de su interpretacion y discusion, destacando
los aspectos técnicos relevantes observados en el
procesamiento de los datos.

3.1 Control de calidad antes y después del recorte de
adaptadores

El anélisis inicial con FastQC mostré que todas las
lecturas crudas presentaban alta calidad por base (PASS),
descartando problemas de secuenciacion como fuente de
error. Sin embargo, el moédulo Adapter Content indico
una presencia elevada de adaptadores de [llumina (FAIL
en todas las muestras), con acumulacion a partir de los 22
nt, reflejando el hecho de que las lecturas (51 nt)
excedian la longitud tipica de los miRNA maduros (18—



24 nt) y, por lo tanto, retenian fragmentos del adaptador
(ver figura 1A).

Tras el recorte con Cutadapt, el mdédulo de Adapter
Content pas6 a PASS en todas las muestras, confirmando
la remocion exitosa de adaptadores. De igual manera, las
secuencias  sobre-representadas, que inicialmente
correspondian a adaptadores 'y primers, fueron
reemplazadas por secuencias clasificadas como “No
Hit”, lo que refleja la alta abundancia relativa de unos
pocos miRNA dominantes, un hallazgo esperado en
bibliotecas de SRNA-seq [24].

La distribucion de longitudes posterior al filtrado
mostré un perfil uniforme y consistente entre todas las
muestras, concentrado en el rango de 18-26 nt, con un
pico principal alrededor de los 22 nt, caracteristico de
miRNA maduros (ver figura 1B), lo que asegura que las
lecturas retenidas corresponden al tamafio bioldgico
esperado y facilita la posterior anotacion y cuantificacion
de miRNA [7].

A FastQC: Adapter Content
o) 6 samples

Sbp 10 bp 15 bp 20bp 25bp 30bp 3sbp 40bp

B FastQC: Sequence Length Distribution
6 samples

14M
12M

10M

18 bp 19 bp 20bp 21bp 22bp 23bp 24 bp 25bp 26bp

Figura 1. Resumen del control de calidad antes y después del recorte. (A).
Contenido de adaptadores en las lecturas crudas, mostrando acumulacion a
partir de los 22-24 nt (FAIL en todas las muestras). Tras el recorte con
Cutadapt, el modulo pasé6 a PASS, confirmando la eliminacion de
adaptadores. (B) Distribucion de longitudes de las lecturas después del filtrado,

mostrando un perfil uniforme entre las seis muestras y concentrado en el rango
esperado para miRNA maduros, con un pico principal alrededor de los 22 nt.

Los resultados consolidados en la tabla 1 reflejan este
patron de mejora: el Adapter content cambié de FAIL a
PASS, la distribucion de longitudes de WARN a PASS,
mientras que la calidad por base se mantuvo en PASS en
todo momento. La marca FAIL persistente en
Overrepresented  sequences  corresponde a la
sobreexpresion biologica de ciertos miRNA y no a
contaminantes técnicos. En bibliotecas de sRNA es
habitual que unos pocos miRNA muy abundantes
superen el umbral definido por FastQC (>0.1% del total
de lecturas), lo que activa la alerta automatica. Este
resultado refleja la naturaleza regulatoria y la
acumulacion diferencial de determinados miRNA en el
tejido analizado, mas que un problema de calidad
experimental o de preparacion de la libreria [24], [25].

Tabla 1. Estado de los principales mddulos de FastQC en muestras crudas y

procesadas
Muestra/ Per-b Adapter Overrepresent Length
Estado quality content seqs dist
A. Total
Antes PASS FAIL FAIL WARN

Después PASS PASS
A. Parental Lobe
Antes PASS FAIL FAIL WARN
Después PASS PASS FAIL (No Hit)  PASS
A. Cerebellum

FAIL (No Hit)  PASS

Antes PASS FAIL FAIL WARN
Después PASS PASS FAIL (No Hit)  PASS
F. Total
Antes PASS FAIL FAIL WARN

Después PASS PASS
F. Parental Lobe
Antes PASS FAIL FAIL WARN
Después PASS PASS FAIL (No Hit)  PASS
F. Cerebellum
Antes PASS FAIL FAIL WARN
Después PASS PASS FAIL (No Hit)  PASS

FAIL (No Hit)  PASS

El control de calidad con FastQC se realiza tanto en las
lecturas crudas como en las lecturas procesadas para
responder a dos preguntas  distintas  pero
complementarias: En las muestras crudas, permite
diagnosticar posibles problemas técnicos derivados de la
secuenciacion, como la presencia de adaptadores, caidas



en la calidad de base, contaminantes o sesgos de
composicion. Tras el recorte con Cutadapt, un segundo
analisis con FastQC confirma si las intervenciones
aplicadas corrigieron efectivamente esas deficiencias,
garantizando que las lecturas finales son aptas para el
alineamiento y la cuantificacion.

La herramienta MultiQC complementa este proceso al
integrar los resultados de todas las muestras en un solo
reporte, facilitando la comparacion global. Mientras que
FastQC muestra el detalle de cada muestra, MultiQC
ofrece una vision panoramica que permite identificar
patrones comunes o detectar muestras atipicas. Esta
integracion es especialmente util en proyectos con
multiples réplicas bioldgicas, donde la consistencia entre
muestras es clave para la validez estadistica.

Este flujo metodologico refleja la l6gica de diagnostico
— intervencion — verificacion: primero se identifican
los problemas potenciales mediante FastQC en lecturas
crudas, luego se aplican soluciones parametrizadas con
Cutadapt, y finalmente se confirma la correccion con un
segundo analisis de FastQC. Seguir esta secuencia
garantiza la obtencion de datos confiables para las etapas
posteriores de mapeo y cuantificacion, y constituye una
practica fundamental en el andlisis bioinformatico de
datos de secuenciacion.

3.2 Eficiencia de mapeo y asignacion de lecturas

Los archivos resumen generados por HISAT2 y
featureCounts resultaron fundamentales para la
evaluacion inicial del mapeo y la asignacion de lecturas.
En el caso de HISAT2, permitieron identificar facilmente
tanto el numero total de lecturas como las lecturas
mapeadas por muestra, lo que constituye un indicador
directo de la calidad de la alineacion y de Ia
representatividad de los datos para los andlisis
posteriores de expresion diferencial [19]. Por su parte, los
reportes de featureCounts proporcionaron informacion
complementaria al cuantificar las lecturas asignadas
especificamente al feature de interés, en este caso los
miRNA, a la vez que informan sobre las lecturas no
asignadas, lo que facilita el control y la veracidad de los
conteos [20]. Gracias a esta informacion integrada, fue
posible organizar rapidamente los datos en la tabla 2, que
resume la calidad del alineamiento y la representatividad
de cada muestra.

El alineamiento de las secuencias procesadas contra el
genoma de Homo sapiens (GCF_000001405.40)
utilizando HISAT2 mostré altos porcentajes de mapeo en
todas las muestras, con valores entre 88,09 % y 91.54 %.

Estos niveles de alineamiento son consistentes con lo
reportado en experimentos de miRNA-seq cuando se
emplean genomas de referencia de alta calidad y
anotaciones especificas para la especie analizada [26],
[27].

Tabla 2. Resumen de alineamiento y cuantificacion de miRNAs

Muestra Lecturas Lecturas % miRNA
totales mapeadas Mapeo asignados
Adult 18,811,270 17,900,223 91.54% 25,731,752
Total
Adult 18,266,856 16,491,388  88.09% 23,998,199
P _Lobe
Adult 20,009,572 17,872,828 88.94% 27,771,945
Cerebellum
Fetal 31,115,782 27,011,378 88.72% 45,839,991
Total
Fetal 25,803,146 22,777,547 88.17% 37,090,512
P Lobe
Fetal 28,778,505 26,016,359 90.40 % 48,481,866
Cerebellum

En todas las muestras, el nimero de lecturas asignadas
super6 al de lecturas mapeadas. Este fendomeno no
implica un error de conteo, sino que refleja el
comportamiento esperado en el analisis de miRNAs
cuando se permite la inclusion de lecturas multi-mapping
y multi-overlapping mediante el pardmetro -M -O de
featureCounts. En el caso de los miRNAs, es frecuente
que una misma lectura pueda alinearse a més de una
region del genoma (multi-mapping) o coincidir con mas
de una anotacion de miRNA en el archivo de referencia
(multi-overlapping). Esto se debe a que muchos miRNAs
pertenecen a familias altamente conservadas y comparten
secuencias idénticas o muy similares, ademas de que
algunos genes de miRNA estan presentes en multiples
copias genomicas [28], [29], [30].

Como consecuencia, una misma lectura puede
contabilizarse en mas de una entidad anotada,
incrementando el total de lecturas asignadas. Lejos de ser
un artefacto, esta caracteristica es biologicamente
relevante en el analisis de miRNAs, ya que permite
retener informacion que se perderia si se excluyeran las
lecturas  multi-mapping o multi-overlapping. Sin
embargo, es importante interpretarla en este contexto y
no confundirla con una métrica de eficiencia de
asignacion comparable a la utilizada en analisis de
transcritos largos [31].

3.3 Expresion diferencial

El analisis de expresion diferencial realizado con
DESeq?2 gener6 dos salidas principales: (1) una tabla que
incluye todos los miRNAs detectados en las muestras



analizadas, junto con métricas de abundancia, magnitud
de cambio y significancia estadistica, y (2) un archivo en
formato PDF con representaciones graficas que permiten
evaluar tanto la separacion entre grupos como la
magnitud de los cambios de expresion.

Para fines de presentacion, en la tabla 3 se muestra un
resumen de los resultados obtenidos con DESeq2,
correspondiente a los 10 miRNAs mas relevantes. Estos
fueron seleccionados considerando tres criterios
complementarios: 1) la magnitud absoluta del cambio de
expresion ([log2FC|), que refleja la intensidad del efecto
biolégico y permite distinguir los miRNAs con
diferencias mas marcadas entre condiciones; ii) el valor
de significancia ajustado (Padj < 0,05), que garantiza la
solidez estadistica de los hallazgos al controlar por
comparaciones multiples; y iii) un nivel de expresion
minimo (baseMean > 20), que asegura que los miRNAs
seleccionados no solo presenten cambios significativos,
sino que también se encuentren respaldados por una
cantidad suficiente de lecturas, reduciendo asi la
posibilidad de artefactos derivados de baja cobertura. De
esta manera, la tabla resume tanto miRNAs
sobreexpresados como subexpresados entre los grupos
comparados, proporcionando una vision sintética de los
candidatos con mayor interés bioldgico y robustez
estadistica [22], [32].

Tabla 3. Diez miRNAs diferencialmente expresados con mayor relevancia
segin DESeq?2 (criterios: [log2FC|, Padj < 0,05 y baseMean > 20).

GenelD BaseMean  log2FC Padj
hsa-miR-4780 20.89 -6.93  0.00054
hsa-miR-31-3p 52.94 -6.31  0.00000
hsa-miR-561-5p 713.58 6.24  0.00000
hsa-miR-1343-3p 26.81 -5.92 0.00762
hsa-miR-219a-2-3p 24879.93 -5.78  0.00000
hsa-miR-219b-5p 24957.98 -5.78  0.00000
hsa-miR-135a-3p 189.05 5.72 0.00000
hsa-miR-874-3p 1608.11 -5.70  0.00054
hsa-miR-1224-5p 217.88 -5.30  0.00000
hsa-miR-31-5p 1944.63 -5.24  0.00000

La primera representacion grafica en el archivo PDF
corresponde al andlisis de componentes principales
(PCA) generado a partir de la matriz de conteos
normalizados de DESeq2 (ver figura 2). En este grafico,
cada punto representa una muestra en un espacio
bidimensional definido por los dos primeros
componentes principales, que concentran el mayor

porcentaje de varianza en los datos de expresion [33]. El
color distingue el grupo biologico (fetal o adulto), y las
etiquetas identifican cada muestra segun su tipo de tejido.

El PCA revela una clara separacion entre los grupos
adultos (naranja) y fetales (turquesa) a lo largo del primer
componente principal (PC1), que explica el 52 % de la
varianza total. El segundo componente (PC2), con un 22
% adicional, refleja variaciones intragrupo relacionadas
con la seccion cerebral de origen. Destaca que las
muestras de cerebelo se distancian mas del resto de las
muestras dentro de cada grupo, lo que sugiere un perfil
de expresion de miRNAs distintivo para esta region,
independiente de la edad del donante.
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Figura 2. Analisis de componentes principales (PCA) de la expresion de
miRNAs. Se observa separacion clara entre muestras fetales y adultas (PC1:
52 % de varianza) y diferenciacion adicional por seccion cerebral (PC2: 22 %).

El PCA constituye un recurso visual de gran valor, ya
que permite comprender de forma intuitiva como los
patrones globales de expresion diferencian grupos
bioldgicos sin necesidad de examinar cada miRNA de
forma individual. Asimismo, la proporcion de varianza
explicada por los dos primeros componentes (52 % y 22
%) facilita comprender el concepto de varianza en el
analisis multivariante y su relevancia para interpretar
datos 6micos. Este tipo de visualizacion también fomenta
la reflexion sobre la consistencia de las réplicas
bioldgicas y la importancia de un disefio experimental
balanceado [34].

La segunda representacién grafica (ver figura 3)
corresponde al mapa de calor de distancias entre
muestras, calculado a partir de la matriz de conteos
normalizados de DESeq2. Cada celda del grafico
representa la distancia de expresion global entre un par
de muestras, codificada en una escala de colores. La
escala numérica (0-60) corresponde a la distancia
euclidiana entre los perfiles de expresion: valores



cercanos a 0 indican alta similitud (tonos oscuros),
mientras que valores mas altos reflejan menor similitud
(tonos claros). El dendrograma asociado muestra la
agrupacion jerarquica basada en estas distancias [35].

El patrén observado es coherente con el analisis de
componentes principales, ya que las muestras tienden a
agruparse primero por grupo biologico (fetal o adulto) y,
dentro de estos, por seccion cerebral. En particular, las
muestras de cerebelo de ambos grupos presentan un perfil
de expresion diferenciado que las separa del resto de las
muestras de su mismo grupo, lo que coincide con lo
evidenciado en el PCA.
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Figura 3. Mapa de calor de distancias entre muestras basado en perfiles de
expresion de miRNAs normalizados. Las muestras se agrupan principalmente
por grupo bioldgico y, dentro de estos, por region cerebral, destacando el perfil
particular del cerebelo.

Este tipo de visualizacion refuerza la comprension de
como se pueden evaluar relaciones globales entre
muestras en estudios de expresion génica. Permite
identificar patrones de agrupamiento y evaluar la
consistencia de las réplicas bioldgicas, asi como detectar
posibles muestras atipicas [36], [37]. Ademas, al
complementarse con el PCA, este analisis contribuye a
una interpretacion mas robusta de la estructura de los
datos antes de proceder a examinar genes o miRNAs
individuales.

La figura 4 muestra la relacion entre la media de los
conteos normalizados y las estimaciones de dispersion

obtenidas por DESeq2 para cada miRNA incluido en el
analisis. Cada punto negro representa la variabilidad
calculada para un miRNA de manera individual (gene—
est), mientras que la linea roja indica la tendencia
general, es decir, como deberia variar la dispersion segun
el nivel de expresion promedio (fitted) y la linea azul
corresponde a los valores finales que usa el modelo
estadistico, después de ajustar y estabilizar las
estimaciones (final) [22].

En términos simples, la dispersion nos dice qué tan
consistente es la expresion de un miRNA entre las
réplicas biologicas, mas alla de las fluctuaciones
esperadas por azar. La tendencia observada —con mayor
dispersion en miRNAs de baja abundancia y una
estabilizacion progresiva a medida que aumenta la media
de conteos— es un patron tipico en datos de RNA-seq y
esta directamente relacionada con la precision de las
estimaciones de cambio de expresion [22], [37], [38].
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Figura 4. Estimaciones de dispersion para los miRNAs analizados mediante
DESeq2. Se observa mayor variabilidad en miRNAs de baja abundancia y
estabilizacion en los mas expresados, patron tipico en RNA-seq.

Esta visualizacion es clave para entender uno de los
pasos menos visibles, pero mas importantes del flujo de
analisis: el modelado de la variabilidad biologica. Este
grafico permite reforzar conceptos de estadistica aplicada
en Omicas, como el uso de ajustes paramétricos para
estabilizar estimaciones y mejorar la deteccion de
diferencias reales en la expresion génica.



La figura 5 presenta el histograma de valores p
obtenidos en la comparacion de expresion diferencial
entre los grupos fetal y adulto. En este grafico, cada barra
representa la frecuencia de miRNAs que presentan un
valor p dentro de un intervalo especifico. Se observa una
clara acumulacién de valores p cercanos a cero, lo que
indica la presencia de un conjunto importante de
miRNAs con diferencias de expresion estadisticamente
significativas entre los grupos comparados.

La distribucion relativamente uniforme de los valores
p intermedios sugiere que, mas alla de los miRNAs con
cambios claros, existe un amplio conjunto de transcritos
cuya variacion podria atribuirse al azar o a efectos
biologicos menores. Desde un punto de vista estadistico,
este patron es consistente con experimentos bien
disefiados, donde los genes diferencialmente expresados
representan una fraccion del total analizado, mientras que
la mayoria presenta variaciones aleatorias [39], [40].
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Figura 5. Distribucion de valores p en la comparacion fetal vs. adulto. El
exceso de valores cercanos a cero indica un nimero importante de miRNAs
diferencialmente expresados.

Este tipo de visualizacion es particularmente util para
la interpretacion de los valores p en estudios 6micos.
Permite reconocer que un exceso de valores p bajos
sefiala diferencias bioldgicas reales, mientras que una
distribucion uniforme o acumulaciones inesperadas en

valores altos pueden indicar sesgos, problemas en el
disefo experimental o artefactos técnicos [41], [42], [43].

La figura 6 muestra el MA-plot resultante de la
comparacion de expresion diferencial entre las muestras
fetales y adultas. En este grafico, cada punto representa
un miRNA, donde el eje x indica la media de los conteos
normalizados (mean of normalized counts) y el eje y
muestra el cambio de expresion como log: de la razon de
cambio (log: fold change). Los puntos en color azul
corresponden a miRNAs con diferencias de expresion
estadisticamente significativas tras la correccion por
pruebas multiples (Padj < 0,05), mientras que los puntos
en gris representan miRNAs sin significancia estadistica.

El patron caracteristico en forma de “embudo” refleja
la relacion entre la magnitud del cambio de expresion y
la abundancia media: los miRNAs con baja abundancia
presentan una mayor dispersion en sus valores de log2FC,
mientras que los mas abundantes tienden a mostrar
cambios mas consistentes [38], [44]. Este tipo de
representacion permite identificar rdpidamente miRNAs
sobreexpresados (valores positivos de logFC) vy
subexpresados (valores negativos de log.FC) entre los
grupos comparados [40].
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Figura 6. MA-plot del analisis de expresion diferencial entre grupos fetales y
adultos. Los puntos azules marcan miRNAs con expresion diferencial
significativa (Padj < 0,05).

El MA-plot es una herramienta visual efectiva para
interpretar resultados de analisis de expresion diferencial,



ya que facilita comprender como la abundancia influye
en la variabilidad de los cambios de expresion y resalta
la importancia de aplicar criterios estadisticos para
discernir cambios bioldégicamente relevantes de
variaciones aleatorias [22], [38].

Los resultados obtenidos evidencian la solidez del
flujo de trabajo implementado, desde la adecuada calidad
de las lecturas procesadas hasta la alta eficiencia de
mapeo y asignacion de lecturas a miRNAs. Las
representaciones graficas derivadas del analisis con
DESeq2 confirmaron la consistencia de las réplicas
biologicas y permitieron identificar patrones claros de
agrupamiento segin la edad y la region cerebral,
reforzando la wvalidez del disefio experimental.
Asimismo, la deteccion de un conjunto definido de
miRNAs diferencialmente expresados entre muestras
fetales y adultas aporta informacion valiosa para la
comprension de los procesos reguladores asociados al
desarrollo cerebral.

4. Conclusiones

Este trabajo demostré6 que es posible realizar un
analisis completo de miRNAs, desde datos publicos hasta
la obtencion de resultados bioldgicamente interpretables,
utilizando exclusivamente la plataforma Galaxy. La
estrategia propuesta, desarrollada a partir de un caso de
estudio real y reproducible, constituye una herramienta
pedagdgica valiosa para introducir a estudiantes y
profesionales de las ciencias bioldgicas en el analisis de
datos 6micos, superando las barreras técnicas asociadas
al uso de herramientas de linea de comando. Del mismo
modo, al basarse en un flujo reproducible y accesible,
esta propuesta también abre un espacio para que
estudiantes de ingenieria en sistemas se acerquen al
campo de la bioinformatica, contribuyendo con sus
competencias en programacion, modelado y gestion de
datos a la interpretacion de resultados bioldgicos.

Entre las principales ventajas de este enfoque se
encuentra su accesibilidad, ya que Galaxy no requiere
instalaciones complejas ni conocimientos avanzados de
programaciéon,  permitiendo que el  analisis
bioinformatico sea mas inclusivo y adaptable a distintos
entornos académicos y de investigacion.

Adicionalmente, la integracion de herramientas
como Cutadapt, HISAT2, featureCounts y DESeq?2 en un
flujo de trabajo reproducible facilita la comprension de
los pasos clave en el procesamiento y analisis de datos de
miRNA-seq. No obstante, el trabajo también presenta
limitaciones, como la dependencia de la disponibilidad

de herramientas en la instancia de Galaxy utilizada y el
rendimiento computacional, que puede verse afectado en
analisis con grandes volumenes de datos.

Los resultados obtenidos, que incluyen Ia
identificacion de miRNAs diferencialmente expresados
entre grupos fetales y adultos y la caracterizacion de
patrones de expresion asociados a distintas regiones
cerebrales, pueden servir como punto de partida para
estudios de wvalidacion experimental y exploracion
funcional. Asimismo, este flujo de trabajo puede ser
adaptado para el analisis de miRNAs en otros modelos
biologicos o condiciones experimentales, ampliando su
aplicabilidad.

En conjunto, este estudio no solo contribuye al
conocimiento sobre el perfil de expresion de miRNAs en
distintas etapas del desarrollo cerebral humano, sino que
también ofrece una propuesta concreta para democratizar
el acceso a herramientas de bioinformatica, con potencial
de impacto en la formacion de la proxima generacion de
investigadores en biologia molecular y genémica.
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