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RESUMEN. El análisis de datos ómicos es esencial en la biología moderna, pero la complejidad técnica de las herramientas 

bioinformáticas sigue siendo una barrera para quienes no poseen formación en programación. Este trabajo tuvo como objetivo 

demostrar que es posible realizar un análisis completo de microARNs utilizando únicamente Galaxy, como estrategia pedagógica 

para acercar a estudiantes de ciencias biológicas al análisis bioinformático. Se analizaron seis muestras de tejido cerebral humano, 

tres fetales y tres adultas, obtenidas de un repositorio público. El flujo de trabajo incluyó control de calidad con FastQC, eliminación 

de adaptadores con Cutadapt, alineamiento al genoma humano con HISAT2 y cuantificación de lecturas con featureCounts. El 

análisis de expresión diferencial se realizó con DESeq2. Se obtuvieron altos porcentajes de mapeo (87–93 %) y asignación confiable 

de lecturas a miRNAs conocidos. El análisis de componentes principales mostró una separación clara entre fetales y adultos, mientras 

que los mapas de calor confirmaron la consistencia de las réplicas y las diferencias entre regiones cerebrales. El histograma de valores 

p y las estimaciones de dispersión reflejaron patrones típicos de RNA-seq, y el MA-plot permitió identificar miRNAs 

diferencialmente expresados entre ambos grupos. El uso de Galaxy posibilitó completar el análisis sin necesidad de programación ni 

infraestructura avanzada, resaltando su valor como herramienta didáctica para la enseñanza de análisis de datos ómicos. En 

conclusión, este estudio evidencia que es posible implementar un flujo reproducible y accesible para la caracterización de perfiles de 

microARNs, ofreciendo un recurso pedagógico para la formación práctica en bioinformática. 
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ABSTRACT. Omics data analysis has become a cornerstone of modern biology, yet the technical complexity of bioinformatics 

tools remains a significant barrier for students and researchers without programming expertise. This study aimed to demonstrate that 

a complete microRNA workflow can be carried out entirely within the Galaxy platform, as a pedagogical strategy to make 

bioinformatics more accessible in the life sciences. Six human brain tissue samples—three fetal and three adult—were obtained from 

a public repository and analyzed. The workflow included quality control with FastQC, adapter trimming with Cutadapt, alignment 

to the human genome using HISAT2, and read quantification with featureCounts. Differential expression analysis was conducted 

with DESeq2. The pipeline achieved high mapping rates (87–93%) and consistent assignment of reads to known miRNAs. Principal 

component analysis revealed clear separation between fetal and adult groups, while heatmaps confirmed the reproducibility of 

biological replicates and differences across brain regions. Additional outputs, including p-value distributions, dispersion estimates, 

and MA-plots, reflected typical RNA-seq patterns and highlighted sets of miRNAs with significant differential expression. By 

leveraging Galaxy, the entire analysis was completed without the need for programming skills or advanced computing infrastructure, 

underscoring its value as a teaching tool for omics data analysis. In conclusion, this study demonstrates that a reproducible and 
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accessible workflow for microRNA profiling can be implemented in Galaxy, offering a practical educational resource for 

bioinformatics training. 
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1. Introducción 
El avance acelerado de las tecnologías de 

secuenciación de nueva generación ha generado una 

explosión en la producción de datos biológicos a gran 

escala, dando origen a lo que hoy se conoce como la era 

de los datos ómicos. En este nuevo panorama, disciplinas 

como la genómica, transcriptómica, epigenómica y 

metagenómica han incorporado herramientas 

computacionales como parte esencial de sus flujos de 

trabajo. El análisis de estos datos requiere habilidades 

específicas en bioinformática, un campo que combina 

conocimientos de biología molecular con competencias 

en programación, estadística y manejo de datos. Esta 

realidad ha creado una brecha significativa entre la 

generación de datos y su interpretación, especialmente en 

contextos académicos donde muchos estudiantes y 

docentes no cuentan con formación computacional 

formal. De hecho, se ha señalado que la mayoría de los 

estudiantes de ciencias biológicas completan sus estudios 

sin haber recibido formación alguna en bioinformática o 

biología computacional [1]. En consecuencia, existe un 

consenso creciente sobre la necesidad de integrar la 

bioinformática como un componente esencial en la 

educación en ciencias de la vida [2]. 

En este contexto, si bien la bioinformática ha sido 

reconocida como una competencia clave para la 

investigación moderna, su incorporación efectiva en 

entornos educativos aún presenta desafíos importantes. 

Muchos estudiantes de ciencias biológicas no cuentan 

con formación previa en programación, lo que limita su 

habilidad para interactuar con herramientas comunes en 

análisis ómicos (R, Python, entornos Linux). La 

integración de la bioinformática en los planes de estudio 

de pregrado continúa siendo insuficiente: en una encuesta 

nacional realizada en EE. UU., más del 70 % de los 

docentes reportaron enfrentar barreras para incorporar la 

bioinformática en sus cursos, identificando como 

principales desafíos la falta de formación técnica entre 

los estudiantes y la escasez de tiempo para reestructurar 

los contenidos curriculares [3]. Otro estudio descubrió 

que el obstáculo más frecuente informado por 1 260 

profesores fue la falta de experiencia o formación 

docente en bioinformática, seguido por otros factores 

como la saturación del currículo y la preparación 

insuficiente de los estudiantes [4].  

A estos retos se suma la complejidad técnica que 

implica instalar y configurar softwares bioinformáticos 

especializados, así como la necesidad de recursos 

computacionales que muchas universidades, 

especialmente en América Latina, no poseen debido a 

limitaciones presupuestarias persistentes [5]. La 

dispersión de la documentación técnica, a menudo 

redactada en un lenguaje poco accesible para 

principiantes, y la falta de acompañamiento docente 

capacitado agravan aún más el problema [6]. En 

consecuencia, muchos estudiantes perciben la 

bioinformática como un campo inaccesible o reservado 

exclusivamente a expertos, lo cual restringe su 

participación en proyectos reales de análisis de datos 

desde etapas tempranas de su formación. 

Uno de los campos que ilustra claramente esta brecha 

es el estudio de los microARNs (miRNAs). Los miRNAs 

son pequeñas moléculas de ARN no codificante, con una 

longitud de aproximadamente 22 nucleótidos, que 

regulan la expresión génica a nivel postranscripcional 

[7], [8]. Actúan uniéndose a ARN mensajeros (mRNA) 

diana, lo que puede provocar su degradación o inhibir su 

traducción sin necesidad de degradarlos [9], [10]. Debido 

a su papel central en procesos celulares como 

proliferación, diferenciación, muerte celular y sinapsis 

neuronal, los miRNAs se han convertido en 

biomarcadores clave en cáncer, enfermedades 

neurodegenerativas, enfermedades cardiovasculares, 

entre otras [11], [12]. 

El análisis de miRNA implica un flujo de trabajo 

bioinformático multifactorial: desde control de calidad y 

recorte de adaptadores, hasta alineamiento de lecturas, 

cuantificación y análisis de expresión diferencial. Esto 

requiere ejecutar herramientas, normalmente, en 

entornos de línea de comandos [13]. 



 

Este nivel de complejidad convierte al análisis de 

miRNAs en un caso emblemático para mostrar la 

accesibilidad pedagógica de una plataforma como 

Galaxy, donde todos estos pasos pueden realizarse 

mediante interfaces visuales, sin escribir una sola línea 

de código [14]. 

Además de simplificar el proceso técnico, Galaxy 

favorece la colaboración y la transparencia científica al 

permitir que los flujos de trabajo sean compartidos, 

reutilizados y adaptados por otros usuarios [15]. Su 

interfaz gráfica, combinada con el acceso a recursos 

computacionales en la nube, elimina la necesidad de 

contar con equipos de alto rendimiento o conocimientos 

avanzados en administración de sistemas [14]. Esto es 

especialmente relevante en instituciones con recursos 

limitados, donde la adquisición y mantenimiento de 

infraestructura computacional avanzada no siempre es 

viable. En tales contextos, el uso de plataformas abiertas 

y alojadas en servidores externos, como Galaxy, permite 

que estudiantes y docentes accedan a herramientas 

bioinformáticas de alto nivel sin incurrir en costos 

adicionales, superando así una de las principales barreras 

para la enseñanza práctica en análisis ómicos [15]. De 

esta manera, Galaxy no solo reduce las barreras técnicas 

de entrada, sino que también promueve una enseñanza 

basada en proyectos reales, facilitando que los 

participantes se concentren en la interpretación biológica 

de los resultados más que en la resolución de problemas 

de infraestructura o configuración. 

El presente artículo tiene como objetivo demostrar 

cómo puede desarrollarse un análisis completo de 

miRNAs utilizando exclusivamente Galaxy, desde datos 

públicos hasta la obtención de resultados interpretables. 

Se propone este enfoque como una estrategia práctica y 

pedagógica para introducir a estudiantes de ciencias 

biológicas en el mundo de la bioinformática, superando 

las barreras técnicas tradicionales. A través de un caso de 

estudio real y reproducible, se busca mostrar que el 

análisis de datos ómicos puede estar al alcance de 

estudiantes con conocimientos básicos, promoviendo una 

formación más integrada, moderna y participativa. 

 

2. Materiales y Métodos 
Para este estudio se utilizaron datos públicos de 

secuenciación de ARN pequeños (sRNA-seq) de tejido 

cerebral humano, correspondientes al proyecto 

PRJEB71709, disponible en el repositorio European 

Nucleotide Archive (ENA): 

https://www.ebi.ac.uk/ena/browser/view/PRJEB71709. 

La elección de este conjunto de datos se basó en su 

disponibilidad pública, la inclusión de lecturas crudas y 

la relevancia para el análisis bioinformático de miRNAs 

en un contexto educativo. 

Todo el procesamiento y análisis se llevó a cabo en la 

plataforma Galaxy (https://usegalaxy.org/), empleando 

únicamente herramientas disponibles en su interfaz 

gráfica. El flujo de trabajo incluyó el control de calidad 

de las lecturas con FastQC [16], cuyos reportes 

individuales fueron integrados mediante MultiQC [17]. 

Posteriormente, se realizó el recorte de adaptadores con 

Cutadapt [18], el alineamiento de lecturas con HISAT2 

[19], y la cuantificación de miRNA con featureCounts 

[20] empleando anotaciones GFF3 de miRBase (versión 

22.1) [21]. Finalmente, el análisis de expresión 

diferencial se llevó a cabo con DESeq2 [22]. 
 
2.1 Carga de archivos a la plataforma 

Los archivos FASTQ correspondientes a las muestras 

seleccionadas del proyecto PRJEB71709 fueron 

obtenidos desde el repositorio ENA. Se seleccionaron 

tres muestras de tejido cerebral fetal (ERR12409245, 

ERR12409249, ERR12409251) y tres muestras de tejido 

cerebral adulto (ERR12409217, ERR12409229, 

ERR12409239), con el objetivo de ilustrar el análisis 

comparativo de perfiles de miRNA en dos grupos 

biológicos distintos.  

Para la importación de los datos, se utilizaron los 

enlaces directos a los archivos FASTQ comprimidos 

(formato fastq.gz) disponibles en la página del proyecto 

en ENA. Dichos enlaces fueron copiados y pegados en la 

opción Paste/Fetch data de la herramienta Upload Data 

de Galaxy, lo que permitió cargar los datos directamente 

desde la fuente sin necesidad de descargarlos 

previamente al equipo local. 

Una vez cargados, los archivos se renombraron y 

agruparon en una colección dentro de Galaxy, lo que 

facilitó su manejo como un único conjunto y permitió que 

todas las muestras fueran procesadas en bloque durante 

cada paso del flujo de trabajo. Los archivos se 

mantuvieron en su formato comprimido original (gzip), 

dado que Galaxy es compatible con su lectura directa, 

optimizando así tanto el uso de espacio de 

almacenamiento como el tiempo de transferencia. 

 

2.2 Evaluación de calidad y limpieza de secuencias 

El control de calidad inicial de las secuencias crudas, 

agrupadas en la colección generada en el paso anterior, 

se realizó con la herramienta FastQC (Galaxy versión 



 

0.74) utilizando la configuración predeterminada. Este 

análisis permitió identificar la presencia de adaptadores 

remanentes en las lecturas. 

Para la eliminación de adaptadores y el filtrado de 

secuencias se empleó Cutadapt (Galaxy versión 5.1), 

aplicando la herramienta sobre la colección de datos 

crudos. En la opción Custom 3’ adapter sequence, se 

especificó manualmente la secuencia adaptadora 

estándar para bibliotecas de sRNA en plataformas 

Illumina (TGGAATTCTCGGGTGCCAAGG), con el 

fin de asegurar su remoción completa.  

Se estableció un quality cutoff (R1) de 20, valor que 

corresponde a una probabilidad de error de 1 en 100 

(calidad Phred Q20), considerado un umbral estándar 

para asegurar lecturas de alta calidad en estudios de 

expresión génica. Adicionalmente, se definió un rango de 

longitudes entre 18 y 26 nucleótidos (minimum length 

(R1) = 18; maximum length (R1) = 26), con el objetivo 

de conservar secuencias correspondientes a miRNAs 

maduros, los cuales suelen presentar longitudes de entre 

18 y 24 nucleótidos [7]. 

Tras el recorte, se generó un segundo reporte de 

FastQC para verificar la eliminación de adaptadores y la 

mejora en los perfiles de calidad, confirmando que las 

lecturas procesadas eran aptas para las etapas posteriores 

de alineamiento y cuantificación. Finalmente, los 

resultados individuales de FastQC fueron integrados 

mediante MultiQC (Galaxy versión 1.27), lo que 

permitió obtener un reporte consolidado y visualizar de 

forma conjunta las métricas de las seis muestras. 

 

2.3 Mapeo y conteo de lecturas 

El mapeo de la colección de secuencias obtenida tras 

el procesamiento con Cutadapt se realizó utilizando 

HISAT2 (Galaxy versión 2.2.1) con la configuración 

predeterminada, empleando como referencia el genoma 

humano (GCF_000001405.40) disponible en la propia 

plataforma Galaxy. Durante este paso se habilitó la 

generación de un archivo resumen con las estadísticas de 

alineamiento para su posterior revisión. 

La cuantificación de las lecturas alineadas se llevó a 

cabo con la herramienta featureCounts (Galaxy versión 

2.1.1), empleando como archivo de anotación un GFF3 

específico para miRNAs de Homo sapiens, importado 

desde miRBase mediante la opción Paste/Fetch data de 

Galaxy (https://www.mirbase.org/download/hsa.gff3). 

En la opción Gene annotation file se seleccionó “A 

GFF/GTF file in your history”, indicando el archivo .gff3 

previamente importado. Se configuró el parámetro GFF 

feature type filter como “miRNA” y el GFF gene 

identifier como “Name”. Para la asignación de lecturas 

se activó la opción “-M -O”, que incluye tanto lecturas 

multi-mapping como multi-overlapping, dado que en el 

análisis de miRNAs estas situaciones son comunes y 

biológicamente relevantes [23].  

Este procedimiento permitió generar, para cada 

muestra, un archivo de conteos por cada miRNA anotado 

en el archivo de referencia. Dichos archivos fueron 

utilizados directamente en el análisis de expresión 

diferencial posterior sin necesidad de combinarlos 

previamente. 

 

2.4 Análisis de expresión diferencial 

Previo al análisis, se editaron los nombres de los 

archivos de conteos generados en la etapa anterior, de 

manera que coincidieran con las etiquetas que se 

mostrarían en las representaciones gráficas posteriores. 

El análisis de expresión diferencial se llevó a cabo 

utilizando la herramienta DESeq2 (Galaxy versión 

2.11.40.8). En la opción How se seleccionó “select 

datasets per level”, definiendo el factor experimental 

como “Edad”. Para el Factor level 1 (Fetal) se 

seleccionaron los tres archivos de conteos 

correspondientes a las muestras fetales, mientras que 

para el Factor level 2 (Adult) se seleccionaron los tres 

archivos de conteos correspondientes a las muestras 

adultas. Todos los demás parámetros se mantuvieron en 

su configuración predeterminada. 

 

3. Resultados y discusión 
En esta sección se presentan los resultados obtenidos a 

lo largo del flujo de trabajo implementado en Galaxy, 

desde el control de calidad de las lecturas crudas hasta el 

análisis de expresión diferencial de miRNAs entre 

muestras de tejido cerebral fetal y adulto. Cada etapa se 

acompaña de su interpretación y discusión, destacando 

los aspectos técnicos relevantes observados en el 

procesamiento de los datos. 

 

3.1 Control de calidad antes y después del recorte de 

adaptadores 

El análisis inicial con FastQC mostró que todas las 

lecturas crudas presentaban alta calidad por base (PASS), 

descartando problemas de secuenciación como fuente de 

error. Sin embargo, el módulo Adapter Content indicó 

una presencia elevada de adaptadores de Illumina (FAIL 

en todas las muestras), con acumulación a partir de los 22 

nt, reflejando el hecho de que las lecturas (51 nt) 

excedían la longitud típica de los miRNA maduros (18–



 

24 nt) y, por lo tanto, retenían fragmentos del adaptador 

(ver figura 1A).  

Tras el recorte con Cutadapt, el módulo de Adapter 

Content pasó a PASS en todas las muestras, confirmando 

la remoción exitosa de adaptadores. De igual manera, las 

secuencias sobre-representadas, que inicialmente 

correspondían a adaptadores y primers, fueron 

reemplazadas por secuencias clasificadas como “No 

Hit”, lo que refleja la alta abundancia relativa de unos 

pocos miRNA dominantes, un hallazgo esperado en 

bibliotecas de sRNA-seq [24]. 

La distribución de longitudes posterior al filtrado 

mostró un perfil uniforme y consistente entre todas las 

muestras, concentrado en el rango de 18–26 nt, con un 

pico principal alrededor de los 22 nt, característico de 

miRNA maduros (ver figura 1B), lo que asegura que las 

lecturas retenidas corresponden al tamaño biológico 

esperado y facilita la posterior anotación y cuantificación 

de miRNA [7]. 

 

 
Figura 1. Resumen del control de calidad antes y después del recorte. (A). 

Contenido de adaptadores en las lecturas crudas, mostrando acumulación a 

partir de los 22–24 nt (FAIL en todas las muestras). Tras el recorte con 

Cutadapt, el módulo pasó a PASS, confirmando la eliminación de 

adaptadores. (B) Distribución de longitudes de las lecturas después del filtrado, 

mostrando un perfil uniforme entre las seis muestras y concentrado en el rango 

esperado para miRNA maduros, con un pico principal alrededor de los 22 nt. 
 

Los resultados consolidados en la tabla 1 reflejan este 

patrón de mejora: el Adapter content cambió de FAIL a 

PASS, la distribución de longitudes de WARN a PASS, 

mientras que la calidad por base se mantuvo en PASS en 

todo momento. La marca FAIL persistente en 

Overrepresented sequences corresponde a la 

sobreexpresión biológica de ciertos miRNA y no a 

contaminantes técnicos. En bibliotecas de sRNA es 

habitual que unos pocos miRNA muy abundantes 

superen el umbral definido por FastQC (≥0.1% del total 

de lecturas), lo que activa la alerta automática. Este 

resultado refleja la naturaleza regulatoria y la 

acumulación diferencial de determinados miRNA en el 

tejido analizado, más que un problema de calidad 

experimental o de preparación de la librería [24], [25]. 

 
Tabla 1. Estado de los principales módulos de FastQC en muestras crudas y 

procesadas 

Muestra/ 

Estado 

Per-b 

quality 

Adapter 

content 

Overrepresent 

seqs 

Length 

dist 

A. Total  

Antes PASS FAIL FAIL WARN 

Después PASS PASS FAIL (No Hit) PASS 

A. Parental Lobe 

Antes PASS FAIL FAIL WARN 

Después PASS PASS FAIL (No Hit) PASS 

A. Cerebellum 

Antes PASS FAIL FAIL WARN 

Después PASS PASS FAIL (No Hit) PASS 

F. Total 

Antes PASS FAIL FAIL WARN 

Después PASS PASS FAIL (No Hit) PASS 

F. Parental Lobe 

Antes PASS FAIL FAIL WARN 

Después PASS PASS FAIL (No Hit) PASS 

F. Cerebellum 

Antes PASS FAIL FAIL WARN 

Después PASS PASS FAIL (No Hit) PASS 

 

El control de calidad con FastQC se realiza tanto en las 

lecturas crudas como en las lecturas procesadas para 

responder a dos preguntas distintas pero 

complementarias: En las muestras crudas, permite 

diagnosticar posibles problemas técnicos derivados de la 

secuenciación, como la presencia de adaptadores, caídas 



 

en la calidad de base, contaminantes o sesgos de 

composición. Tras el recorte con Cutadapt, un segundo 

análisis con FastQC confirma si las intervenciones 

aplicadas corrigieron efectivamente esas deficiencias, 

garantizando que las lecturas finales son aptas para el 

alineamiento y la cuantificación. 

La herramienta MultiQC complementa este proceso al 

integrar los resultados de todas las muestras en un solo 

reporte, facilitando la comparación global. Mientras que 

FastQC muestra el detalle de cada muestra, MultiQC 

ofrece una visión panorámica que permite identificar 

patrones comunes o detectar muestras atípicas. Esta 

integración es especialmente útil en proyectos con 

múltiples réplicas biológicas, donde la consistencia entre 

muestras es clave para la validez estadística.  

Este flujo metodológico refleja la lógica de diagnóstico 

→ intervención → verificación: primero se identifican 

los problemas potenciales mediante FastQC en lecturas 

crudas, luego se aplican soluciones parametrizadas con 

Cutadapt, y finalmente se confirma la corrección con un 

segundo análisis de FastQC. Seguir esta secuencia 

garantiza la obtención de datos confiables para las etapas 

posteriores de mapeo y cuantificación, y constituye una 

práctica fundamental en el análisis bioinformático de 

datos de secuenciación. 
 

 

3.2 Eficiencia de mapeo y asignación de lecturas 

Los archivos resumen generados por HISAT2 y 

featureCounts resultaron fundamentales para la 

evaluación inicial del mapeo y la asignación de lecturas. 

En el caso de HISAT2, permitieron identificar fácilmente 

tanto el número total de lecturas como las lecturas 

mapeadas por muestra, lo que constituye un indicador 

directo de la calidad de la alineación y de la 

representatividad de los datos para los análisis 

posteriores de expresión diferencial [19]. Por su parte, los 

reportes de featureCounts proporcionaron información 

complementaria al cuantificar las lecturas asignadas 

específicamente al feature de interés, en este caso los 

miRNA, a la vez que informan sobre las lecturas no 

asignadas, lo que facilita el control y la veracidad de los 

conteos [20]. Gracias a esta información integrada, fue 

posible organizar rápidamente los datos en la tabla 2, que 

resume la calidad del alineamiento y la representatividad 

de cada muestra.  

El alineamiento de las secuencias procesadas contra el 

genoma de Homo sapiens (GCF_000001405.40) 

utilizando HISAT2 mostró altos porcentajes de mapeo en 

todas las muestras, con valores entre 88,09 % y 91.54 %. 

Estos niveles de alineamiento son consistentes con lo 

reportado en experimentos de miRNA-seq cuando se 

emplean genomas de referencia de alta calidad y 

anotaciones específicas para la especie analizada [26], 

[27]. 

 
Tabla 2. Resumen de alineamiento y cuantificación de miRNAs 

Muestra Lecturas 

totales 

Lecturas 

mapeadas 

% 

Mapeo 

miRNA 

asignados 

Adult 

Total 

18,811,270 17,900,223 91.54 % 25,731,752 

Adult 

P_Lobe 

18,266,856 16,491,388 88.09 % 23,998,199 

Adult 

Cerebellum 

20,009,572 17,872,828 88.94 % 27,771,945 

Fetal 

Total 

31,115,782 27,011,378 88.72 % 45,839,991 

Fetal 

P_Lobe 

25,803,146 22,777,547 88.17 % 37,090,512 

Fetal 

Cerebellum 

28,778,505 26,016,359 90.40 % 48,481,866 

 

En todas las muestras, el número de lecturas asignadas 

superó al de lecturas mapeadas. Este fenómeno no 

implica un error de conteo, sino que refleja el 

comportamiento esperado en el análisis de miRNAs 

cuando se permite la inclusión de lecturas multi-mapping 

y multi-overlapping mediante el parámetro -M -O de 

featureCounts. En el caso de los miRNAs, es frecuente 

que una misma lectura pueda alinearse a más de una 

región del genoma (multi-mapping) o coincidir con más 

de una anotación de miRNA en el archivo de referencia 

(multi-overlapping). Esto se debe a que muchos miRNAs 

pertenecen a familias altamente conservadas y comparten 

secuencias idénticas o muy similares, además de que 

algunos genes de miRNA están presentes en múltiples 

copias genómicas [28], [29], [30]. 

Como consecuencia, una misma lectura puede 

contabilizarse en más de una entidad anotada, 

incrementando el total de lecturas asignadas. Lejos de ser 

un artefacto, esta característica es biológicamente 

relevante en el análisis de miRNAs, ya que permite 

retener información que se perdería si se excluyeran las 

lecturas multi-mapping o multi-overlapping. Sin 

embargo, es importante interpretarla en este contexto y 

no confundirla con una métrica de eficiencia de 

asignación comparable a la utilizada en análisis de 

transcritos largos [31]. 

 

3.3 Expresión diferencial 

El análisis de expresión diferencial realizado con 

DESeq2 generó dos salidas principales: (1) una tabla que 

incluye todos los miRNAs detectados en las muestras 



 

analizadas, junto con métricas de abundancia, magnitud 

de cambio y significancia estadística, y (2) un archivo en 

formato PDF con representaciones gráficas que permiten 

evaluar tanto la separación entre grupos como la 

magnitud de los cambios de expresión. 

Para fines de presentación, en la tabla 3 se muestra un 

resumen de los resultados obtenidos con DESeq2, 

correspondiente a los 10 miRNAs más relevantes. Estos 

fueron seleccionados considerando tres criterios 

complementarios: i) la magnitud absoluta del cambio de 

expresión (|log₂FC|), que refleja la intensidad del efecto 

biológico y permite distinguir los miRNAs con 

diferencias más marcadas entre condiciones; ii) el valor 

de significancia ajustado (Padj < 0,05), que garantiza la 

solidez estadística de los hallazgos al controlar por 

comparaciones múltiples; y iii) un nivel de expresión 

mínimo (baseMean > 20), que asegura que los miRNAs 

seleccionados no solo presenten cambios significativos, 

sino que también se encuentren respaldados por una 

cantidad suficiente de lecturas, reduciendo así la 

posibilidad de artefactos derivados de baja cobertura. De 

esta manera, la tabla resume tanto miRNAs 

sobreexpresados como subexpresados entre los grupos 

comparados, proporcionando una visión sintética de los 

candidatos con mayor interés biológico y robustez 

estadística [22], [32]. 
 

Tabla 3. Diez miRNAs diferencialmente expresados con mayor relevancia 

según DESeq2 (criterios: |log₂FC|, Padj < 0,05 y baseMean > 20). 

GeneID BaseMean log2FC Padj 

hsa-miR-4780 20.89 -6.93 0.00054 

hsa-miR-31-3p 52.94 -6.31 0.00000 

hsa-miR-561-5p 713.58 6.24 0.00000 

hsa-miR-1343-3p 26.81 -5.92 0.00762 

hsa-miR-219a-2-3p 24879.93 -5.78 0.00000 

hsa-miR-219b-5p 24957.98 -5.78 0.00000 

hsa-miR-135a-3p 189.05 5.72 0.00000 

hsa-miR-874-3p 1608.11 -5.70 0.00054 

hsa-miR-1224-5p 217.88 -5.30 0.00000 

hsa-miR-31-5p 1944.63 -5.24 0.00000 

 

La primera representación gráfica en el archivo PDF 

corresponde al análisis de componentes principales 

(PCA) generado a partir de la matriz de conteos 

normalizados de DESeq2 (ver figura 2). En este gráfico, 

cada punto representa una muestra en un espacio 

bidimensional definido por los dos primeros 

componentes principales, que concentran el mayor 

porcentaje de varianza en los datos de expresión [33]. El 

color distingue el grupo biológico (fetal o adulto), y las 

etiquetas identifican cada muestra según su tipo de tejido. 

El PCA revela una clara separación entre los grupos 

adultos (naranja) y fetales (turquesa) a lo largo del primer 

componente principal (PC1), que explica el 52 % de la 

varianza total. El segundo componente (PC2), con un 22 

% adicional, refleja variaciones intragrupo relacionadas 

con la sección cerebral de origen. Destaca que las 

muestras de cerebelo se distancian más del resto de las 

muestras dentro de cada grupo, lo que sugiere un perfil 

de expresión de miRNAs distintivo para esta región, 

independiente de la edad del donante. 

 

 
Figura 2. Análisis de componentes principales (PCA) de la expresión de 

miRNAs. Se observa separación clara entre muestras fetales y adultas (PC1: 

52 % de varianza) y diferenciación adicional por sección cerebral (PC2: 22 %). 

 

El PCA constituye un recurso visual de gran valor, ya 

que permite comprender de forma intuitiva cómo los 

patrones globales de expresión diferencian grupos 

biológicos sin necesidad de examinar cada miRNA de 

forma individual. Asimismo, la proporción de varianza 

explicada por los dos primeros componentes (52 % y 22 

%) facilita comprender el concepto de varianza en el 

análisis multivariante y su relevancia para interpretar 

datos ómicos. Este tipo de visualización también fomenta 

la reflexión sobre la consistencia de las réplicas 

biológicas y la importancia de un diseño experimental 

balanceado [34]. 

La segunda representación gráfica (ver figura 3) 

corresponde al mapa de calor de distancias entre 

muestras, calculado a partir de la matriz de conteos 

normalizados de DESeq2. Cada celda del gráfico 

representa la distancia de expresión global entre un par 

de muestras, codificada en una escala de colores.  La 

escala numérica (0–60) corresponde a la distancia 

euclidiana entre los perfiles de expresión: valores 



 

cercanos a 0 indican alta similitud (tonos oscuros), 

mientras que valores más altos reflejan menor similitud 

(tonos claros). El dendrograma asociado muestra la 

agrupación jerárquica basada en estas distancias [35]. 

El patrón observado es coherente con el análisis de 

componentes principales, ya que las muestras tienden a 

agruparse primero por grupo biológico (fetal o adulto) y, 

dentro de estos, por sección cerebral. En particular, las 

muestras de cerebelo de ambos grupos presentan un perfil 

de expresión diferenciado que las separa del resto de las 

muestras de su mismo grupo, lo que coincide con lo 

evidenciado en el PCA. 

 

 
Figura 3. Mapa de calor de distancias entre muestras basado en perfiles de 

expresión de miRNAs normalizados. Las muestras se agrupan principalmente 

por grupo biológico y, dentro de estos, por región cerebral, destacando el perfil 

particular del cerebelo. 

 

Este tipo de visualización refuerza la comprensión de 

cómo se pueden evaluar relaciones globales entre 

muestras en estudios de expresión génica. Permite 

identificar patrones de agrupamiento y evaluar la 

consistencia de las réplicas biológicas, así como detectar 

posibles muestras atípicas [36], [37]. Además, al 

complementarse con el PCA, este análisis contribuye a 

una interpretación más robusta de la estructura de los 

datos antes de proceder a examinar genes o miRNAs 

individuales. 

La figura 4 muestra la relación entre la media de los 

conteos normalizados y las estimaciones de dispersión 

obtenidas por DESeq2 para cada miRNA incluido en el 

análisis. Cada punto negro representa la variabilidad 

calculada para un miRNA de manera individual (gene–

est), mientras que la línea roja indica la tendencia 

general, es decir, cómo debería variar la dispersión según 

el nivel de expresión promedio (fitted) y la línea azul 

corresponde a los valores finales que usa el modelo 

estadístico, después de ajustar y estabilizar las 

estimaciones (final) [22]. 

En términos simples, la dispersión nos dice qué tan 

consistente es la expresión de un miRNA entre las 

réplicas biológicas, más allá de las fluctuaciones 

esperadas por azar. La tendencia observada —con mayor 

dispersión en miRNAs de baja abundancia y una 

estabilización progresiva a medida que aumenta la media 

de conteos— es un patrón típico en datos de RNA-seq y 

está directamente relacionada con la precisión de las 

estimaciones de cambio de expresión [22], [37], [38]. 

 
Figura 4. Estimaciones de dispersión para los miRNAs analizados mediante 

DESeq2. Se observa mayor variabilidad en miRNAs de baja abundancia y 

estabilización en los más expresados, patrón típico en RNA-seq. 

 

Esta visualización es clave para entender uno de los 

pasos menos visibles, pero más importantes del flujo de 

análisis: el modelado de la variabilidad biológica. Este 

gráfico permite reforzar conceptos de estadística aplicada 

en ómicas, como el uso de ajustes paramétricos para 

estabilizar estimaciones y mejorar la detección de 

diferencias reales en la expresión génica. 



 

La figura 5 presenta el histograma de valores p 

obtenidos en la comparación de expresión diferencial 

entre los grupos fetal y adulto. En este gráfico, cada barra 

representa la frecuencia de miRNAs que presentan un 

valor p dentro de un intervalo específico. Se observa una 

clara acumulación de valores p cercanos a cero, lo que 

indica la presencia de un conjunto importante de 

miRNAs con diferencias de expresión estadísticamente 

significativas entre los grupos comparados. 

La distribución relativamente uniforme de los valores 

p intermedios sugiere que, más allá de los miRNAs con 

cambios claros, existe un amplio conjunto de transcritos 

cuya variación podría atribuirse al azar o a efectos 

biológicos menores. Desde un punto de vista estadístico, 

este patrón es consistente con experimentos bien 

diseñados, donde los genes diferencialmente expresados 

representan una fracción del total analizado, mientras que 

la mayoría presenta variaciones aleatorias [39], [40]. 

 

 
Figura 5. Distribución de valores p en la comparación fetal vs. adulto. El 

exceso de valores cercanos a cero indica un número importante de miRNAs 

diferencialmente expresados. 

 

Este tipo de visualización es particularmente útil para 

la interpretación de los valores p en estudios ómicos. 

Permite reconocer que un exceso de valores p bajos 

señala diferencias biológicas reales, mientras que una 

distribución uniforme o acumulaciones inesperadas en 

valores altos pueden indicar sesgos, problemas en el 

diseño experimental o artefactos técnicos [41], [42], [43]. 

La figura 6 muestra el MA-plot resultante de la 

comparación de expresión diferencial entre las muestras 

fetales y adultas. En este gráfico, cada punto representa 

un miRNA, donde el eje x indica la media de los conteos 

normalizados (mean of normalized counts) y el eje y 

muestra el cambio de expresión como log₂ de la razón de 

cambio (log₂ fold change). Los puntos en color azul 

corresponden a miRNAs con diferencias de expresión 

estadísticamente significativas tras la corrección por 

pruebas múltiples (Padj < 0,05), mientras que los puntos 

en gris representan miRNAs sin significancia estadística. 

El patrón característico en forma de “embudo” refleja 

la relación entre la magnitud del cambio de expresión y 

la abundancia media: los miRNAs con baja abundancia 

presentan una mayor dispersión en sus valores de log₂FC, 

mientras que los más abundantes tienden a mostrar 

cambios más consistentes [38], [44]. Este tipo de 

representación permite identificar rápidamente miRNAs 

sobreexpresados (valores positivos de log₂FC) y 

subexpresados (valores negativos de log₂FC) entre los 

grupos comparados [40]. 

 

 
Figura 6. MA-plot del análisis de expresión diferencial entre grupos fetales y 

adultos. Los puntos azules marcan miRNAs con expresión diferencial 

significativa (Padj < 0,05). 

 

El MA-plot es una herramienta visual efectiva para 

interpretar resultados de análisis de expresión diferencial, 



 

ya que facilita comprender cómo la abundancia influye 

en la variabilidad de los cambios de expresión y resalta 

la importancia de aplicar criterios estadísticos para 

discernir cambios biológicamente relevantes de 

variaciones aleatorias [22], [38]. 

Los resultados obtenidos evidencian la solidez del 

flujo de trabajo implementado, desde la adecuada calidad 

de las lecturas procesadas hasta la alta eficiencia de 

mapeo y asignación de lecturas a miRNAs. Las 

representaciones gráficas derivadas del análisis con 

DESeq2 confirmaron la consistencia de las réplicas 

biológicas y permitieron identificar patrones claros de 

agrupamiento según la edad y la región cerebral, 

reforzando la validez del diseño experimental. 

Asimismo, la detección de un conjunto definido de 

miRNAs diferencialmente expresados entre muestras 

fetales y adultas aporta información valiosa para la 

comprensión de los procesos reguladores asociados al 

desarrollo cerebral. 

 

4. Conclusiones 
Este trabajo demostró que es posible realizar un 

análisis completo de miRNAs, desde datos públicos hasta 

la obtención de resultados biológicamente interpretables, 

utilizando exclusivamente la plataforma Galaxy. La 

estrategia propuesta, desarrollada a partir de un caso de 

estudio real y reproducible, constituye una herramienta 

pedagógica valiosa para introducir a estudiantes y 

profesionales de las ciencias biológicas en el análisis de 

datos ómicos, superando las barreras técnicas asociadas 

al uso de herramientas de línea de comando. Del mismo 

modo, al basarse en un flujo reproducible y accesible, 

esta propuesta también abre un espacio para que 

estudiantes de ingeniería en sistemas se acerquen al 

campo de la bioinformática, contribuyendo con sus 

competencias en programación, modelado y gestión de 

datos a la interpretación de resultados biológicos. 

Entre las principales ventajas de este enfoque se 

encuentra su accesibilidad, ya que Galaxy no requiere 

instalaciones complejas ni conocimientos avanzados de 

programación, permitiendo que el análisis 

bioinformático sea más inclusivo y adaptable a distintos 

entornos académicos y de investigación.  

Adicionalmente, la integración de herramientas 

como Cutadapt, HISAT2, featureCounts y DESeq2 en un 

flujo de trabajo reproducible facilita la comprensión de 

los pasos clave en el procesamiento y análisis de datos de 

miRNA-seq. No obstante, el trabajo también presenta 

limitaciones, como la dependencia de la disponibilidad 

de herramientas en la instancia de Galaxy utilizada y el 

rendimiento computacional, que puede verse afectado en 

análisis con grandes volúmenes de datos. 

Los resultados obtenidos, que incluyen la 

identificación de miRNAs diferencialmente expresados 

entre grupos fetales y adultos y la caracterización de 

patrones de expresión asociados a distintas regiones 

cerebrales, pueden servir como punto de partida para 

estudios de validación experimental y exploración 

funcional. Asimismo, este flujo de trabajo puede ser 

adaptado para el análisis de miRNAs en otros modelos 

biológicos o condiciones experimentales, ampliando su 

aplicabilidad. 

En conjunto, este estudio no solo contribuye al 

conocimiento sobre el perfil de expresión de miRNAs en 

distintas etapas del desarrollo cerebral humano, sino que 

también ofrece una propuesta concreta para democratizar 

el acceso a herramientas de bioinformática, con potencial 

de impacto en la formación de la próxima generación de 

investigadores en biología molecular y genómica. 
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