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The article presents overview of authors’ results concerning mobile robot con-
trol algorithms that use local artificial potential functions (APF) to avoid colli-

sions and global artificial potential functions, named also navigation functions

(NF) used to both collision avoidance and driving robot to a desired goal. All
included algorithms assume that the mobile platform is differentially driven

mobile robot with nonholonomic constraints. Effectiveness of presented meth-

ods is illustrated by simulation and experimental results. Experimental setup
used to demonstrate control algorithms is presented.

Keywords: mobile robot; collision avoidance; artificial potential function; nav-

igation function.

1. Introduction

The number of applications in which mobile robots are used to solve some

practical problems is rapidly increasing. Collision avoidance is one of the

basic problems in this kind of systems. During the task execution robot

performs motion to the goal or along the desired trajectory simultaneously

avoiding collisions.

In this paper two alternative approaches to collision avoidance are re-

viewed. The former are APFs originally proposed by1 in 1986. A large

number of methods use this approach. Its main advantages are conceptual

simplicity and ease of implementation. On the other hand this methodol-

ogy has an important limitation. If the obstacles’ areas of repulsion overlap

local minima may occur.

This problem was solved in the turn of 1980s and 1990s by Rimon and
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Koditschek,2,34 They proposed NF method, called also global potential

function that guarantees that local minima will not appear. The proposed

method assumed that the robot has no nonholonomic constraints. In 2004

Urakubo proposed an extension to a two-wheeled mobile robot.5

This paper presents the overview of the control methods that use APFs

and NF to control differentially driven mobile platform. Depending on the

method the goal is to track desired trajectory or convergence to the desired

fixed position and orientation.

Section 2 presents model of the mobile robot. Section 3 introduces the

concept of APF and methods based on it. In Subsection 3.1 the linear con-

trol algorithm is described. It uses linearized model of the robot. Subsection

3.2 presents persistent excitation method. Persistent excitation block is re-

sponsible for the convergence of the position in the direction transverse to

the main axis of the robot. In Subsection 3.3 vector field orientation method

is introduced. Section 4 presents two NF control methods. In Subsection

4.1 control algorithm for sphere worlds is described. In Subsection 4.2 its

extension to more complex star worlds is presented. Section 5 describes ex-

perimental setup used to verify effectiveness of the proposed methods. In

the last Section concluding remarks are given.

2. Model of the robot

The kinematic model of the differentially-driven mobile robot is given by

the following equation:

q̇ = B̃u =

 cos θ 0

sin θ 0

0 1

u (1)

where x, y, θ are position and orientation coordinates of the robot with

respect to a global, fixed coordinate frame; v - linear control velocity, ω -

angular control velocity.

3. APF methods

Collision avoidance behavior is based on the artificial potential functions

(APF). This concept originally was proposed in.1 All robots are surrounded

by APFs that raise to infinity near objects border rj (j = 1, ...,M , M -

number of the obstacles) and decreases to zero at some distanceRj ,Rj > rj .
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One can introduce the following function:6

Baj(lj) =


0 for lj < rj

e
lj−rj
lj−Rj for rj ≤ lj < Rj

0 for lj ≥ Rj

, (2)

that gives output Baj(lj) ∈ 〈0, 1). Euclidean distance between the robot

and the j-th obstacle is as follows: lj =
∥∥[xj yj ]

> − [x y]>
∥∥. Note that for

lj < rj an arbitrary value of the function Baj(lj) can be set assuming that

the robot does not get into this area. In the presented algorithms this is

guaranteed.

Scaling function (2) within the range 〈0,∞) can be obtained as follows:

Vaj(lj) =
Baj(lj)

1−Baj(lj)
, (3)

that is used later to avoid collisions. Note that Vaj(lj) and its spatial deriva-

tives are bounded for lj > rj .

3.1. Linear control method

In this section trajectory tracking controller proposed in7 is extended by

collision avoidance behavior.

The goal of the control is to drive the formation along the desired trajec-

tory avoiding collisions with the static obstacles. The assumption is made

that the planner generates desired trajectory that does not intersects APFs

of the obstacles. Trajectory tracking is equivalent to bringing the following

quantities to zero:

px = xd − x
py = yd − y
pθ = θd − θ,

(4)

where xd and yd are desired position coordinates and θd is desired orienta-

tion. The system error expressed with respect to the coordinate frame fixed

to the robot is described below: exey
eθ

 =

 cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

pxpy
pθ

 . (5)

Using above equations and nonholonomic constraint ẏ cos(θ)−ẋ sin(θ) =
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0 the error dynamics is as follows:

ėx = eyω − v + vd cos eθ
ėy = −exω + vd sin eθ

ėθ = ωd − ω
. (6)

One can introduce the position correction variables that consist of po-

sition errors and collision avoidance terms:

Px = px −
∑M
j=1

∂Vaj
∂x

Py = py −
∑M
j=1

∂Vaj
∂y

. (7)

Vaj depends on x and y according to equation (3). The correction variables

can be transformed to the local coordinate frame fixed in the mass center

of the robot:

ExEy
eθ

 =

 cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

PxPy
pθ

 . (8)

Above equation can be transformed to the following form:8[
∂Vaj
∂ex
∂Vaj
∂ey

]
=

[
− cos θ − sin θ

sin θ − cos θ

][ ∂Vaj
∂x
∂Vaj
∂y

]
. (9)

Finally, correction variables expressed with respect to the local coordinate

frame are as follows:

Ex = ex +
∑M
j=1

∂Vaj
∂ex

Ey = ey +
∑M
j=1

∂Vaj
∂ey

. (10)

For lj > Rj components of the gradient of the APF vanish:
∂Vaj
∂ex

= 0 and
∂Vaj
∂ey

= 0. It leads to the conclusion that in this case Ex = ex and Ey = ey.

The algorithm presented in7 extended by the collision avoidance func-

tionality is as follows:

v = vd + k1Ex
ω = ωd + k2sign(vr)Ey + k3eθ

. (11)

Substituting (11) into (6) one can express error dynamics as follows:

ėx = eyω − k1Ex + vd(cos eθ − 1)

ėy = −exω + vd sin eθ
ėθ = −k2sign(vr)Ey − k3eθ

. (12)
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When the robot detects the obstacle its reference trajectory is temporarily

frozen, reference signals: vd and ωd are set to zero. The tracking process

is temporarily suspended because collision avoidance has a higher priority.

Once the robot is outside the collision detection region, it updates the

reference to the new values.

Error dynamics for vd = 0 and ωd = 0 becomes:

ėx = k3eyeθ − k1Ex
ėy = −k3eθex
ėθ = −k3eθ

. (13)

Fig. 1 shows path of the robot in xy-plane. Time graph of position

and orientation error is presented in Fig. 2. Notice that despite of the fact

that the algorithm is based on the linearization (first Lyapunov method)

it ensures quick convergence even if the initial position is far from the

equilibrium point.
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Fig. 1. Path of the robot in xy-plane (simulation results)

3.2. Control with persistent excitation

In this subsection the trajectory tracking control algorithm proposed in9 is

extended by collision avoidance. Equations (4) - (10) introduced in Section

3.1 remain in force in further computations.

Following reference9 control signals of the robot in the case of collision
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Fig. 2. Robot position and orientation errors (simulation results)

avoidance are proposed as follows:

v = vd + c2Ex
ω = ωd + h(t, Ey) + c1eθ

(14)

where h(t, Ey) is bounded, depends linearly on Ey, and continuously differ-

entiable function. It must be properly chosen to ensure persistent excitation

of the reference angular velocity.10

Substituting Eq. (14) into Eq. (6) one can express error dynamics as

follows:

ėx = eyω − c2Ex + vd(cos eθ − 1)

ėy = −exω + vd sin eθ
ėθ = −h(t, Ey)− c1eθ

. (15)

When the robot is in the interaction area its reference trajectory is tem-

porarily frozen, reference signals: vd and ωd are set to zero.

Error dynamics become:

ėx = h(t, Ey)ey + c1eyeθ − c2Ex
ėy = −h(t, Ey)ex − c1eθex
ėθ = −h(t, Ey)− c1eθ

. (16)

Fig. 3 presents path of the robot in xy-plane. Time graph of position

and orientation errors is shown in Fig. 4.

3.3. Vector-Field-Orientation method

This subsection presents VFO trajectory tracking control algorithm11 ex-

tended by the collision avoidance behavior.12
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Fig. 3. Path of the robot in xy-plane (simulation results)
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Fig. 4. Robot position and orientation errors (simulation results)

One can introduce the convergence vector:

h =

hxhy
hθ

 =

kpPx + ẋd
kpPy + ẏd
kθea + θ̇a

 , (17)

where kp, kθ > 0 are control gains of position and orientation errors, re-

spectively; Px, Py are correction variables given by Eq. (4), ea = θa − θ
is auxiliary orientation error. Auxiliary orientation variable θa is defined

as follows: θa = atan2c(hy, hx) (atan2c(·, ·)11 is continuous version of the



June 19, 2018 2:5 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

12

function Atan(·)). Proposed control law for the robot are the following:

uv = hx cos θ + hy sin θ

uω = hθ
. (18)

The following assumptions are imposed.

Assumption 3.1. Desired trajectories do not intersect APF areas of ob-

stacles and robots do not interact when tracking is executed perfectly.

Assumption 3.2. If robot position is in the repel area then reference tra-

jectory is frozen:

qd(t) = qd(t
−), (19)

where t− is the time value before robot gets to the repel area. Higher deriva-

tives of qd(t) are kept zero until robot leaves the repel area.13

Assumption 3.3. When ea ∈ (π2 + πd− δ, π2 + πd+ δ), where δ is a small

positive value, d = 0,±1,±2, ..., then auxiliary orientation variable θa is

replaced by θ̃a = θa + sgn
(
ea −

(
π
2 + πd

))
ε, where ε is a small value that

fulfills condition ε > 0 and sgn(·) denotes the signum function.

Assumption 3.4. When robot reaches a saddle point reference trajectory

is disturbed to drive robot out of local equilibrium point. In the saddle point

the following condition is fulfilled:

‖h∗‖ = 0, (20)

where h∗ =
[
hx hy

]T
. In this case θa(t) is frozen: θa(t) = θa(t−).

Fig. 5 presents path of the robot in xy-plane.

4. NF methods

In the turn of 1980s and 1990s Rimon and Koditschek presented concept of

the navigation function. At first a sphere world version was introduced2 that

assumes that the obstacles are bounded with spheres in three dimensional

space or with circles in planar case. Then the method was expanded to

more complex environments,34 All these algorithms assumed a point-like

robot without constraints.

In 2004 Urakubo5 expanded the method introducing navigation function

that takes into account nonholonomic constraints of the mobile robot. In

his method the orientation of the robot can reach desired value just as both

position coordinates. Convergence proof was included in the paper.
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Fig. 5. Path of the robot in xy-plane (simulation results)

In the papers,14,1516 navigation function was used to control multiple

mobile robots. Authors of these publications adress the problem of colli-

sion avoidance in multiagent robotic systems. In the first of the mentioned

papers extension of the navigation function called multi-robot navigation

functions (MRNFs) was applied. Second and third of these papers propose

the use of prioritization to solve conflicts in case of concurrent goals of the

agents. Examples of navigation function used for collision avoidance in 3D

space were presented among others in work17 and.16
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Fig. 6. Path of the robot in xy-plane (experimental results)
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Fig. 7. Time graphs of x, y, θ variables (experimental results)

4.1. NF for sphere worlds

The control algorithm requires the robot task space to be bounded by a

circle. It is the obstacle number zero described by the following obstacle

function:4

β0 , ρ20 − ||r − p0||2, (21)

where ρ0 is the radius of the task space, r = [x y]> is the current position

of the robot and p0 is the center of the task space. The controller design

assumes the obstacles to be circular-shaped objects of radii ρi (i = 1, ..., N ,

N being the number of obstacles) with their centers located at positions pi.

The definition of repelling potential function for i-th obstacle is:

βi , ||r − pi||2 − ρ2i . (22)

Given an environment with N obstacles and a task of stabilizing the

robot in its origin the total navigation potential is defined as:

V ,
C

(Cκ + β)
1
κ

, (23)

where κ is a positive, constant design parameter and

C , ||r||2 + θ2
kw

kw + ||r||2
. (24)

Symbol kw in (24) denotes a positive, constant design parameter that allows

to tune the influence of the orientation term on the navigation function de-

pending on the Euclidean distance to the goal. The aggregation of repelling
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potentials happens in term β which is defined as:

β ,
N∏
i=0

βi. (25)

One must note that the iteration starts from zero, which means the inclusion

of task space boundary potential.

The control algorithm proposed in work18 is defined as:

u , −
{
a

[
1 0

0 1

]
+ b

[
0 1

−1 0

]}
B̃>∇V, (26)

where a is a positive, constant design parameter and

b , −b̄L
>∇V
h(g)

. (27)

Symbol b̄ in (27) denotes another positive, constant design parameter and

L> , [sin θ − cos θ 0]. Function h(g) is defined as:

h(g) , g2 + ε
√
g, (28)

where g , ||B̃>∇V || and ε is a small positive constant. Finally, ∇V de-

notes the gradient of the navigation function with respect to variables x, y

and θ. Regardless of number of obstacles, the gradient can be obtained in

analytical form as:

∇V =
∇C(Cκ + β)

1
κ − C

κ (Cκ + β)(
1
κ−1)(κCκ−1∇C +∇β)

(Cκ + β)(
2
κ )

, (29)

where

∇C =


∂C
∂x

∂C
∂y

∂C
∂θ

 =


2x(1− kwθ

2

(kw+||r||2)2 )

2y(1− kwθ
2

(kw+||r||2)2 )

2θ kw
kw+||r||2

 (30)

and

∇β =
N∑
i=0

∂βi∂q
N∏

j=0,j 6=i

βj

 . (31)

As noted in4 all the undesired local minima of navigation function (23)

disappear as the parameter κ increases. An algorithm for automatically

tuning analytic navigation functions for sphere worlds was presented in.19
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The tuning parameter must satisfy a lower bound to ensure convergence to

the desired value. In this paper navigation functions have been manually

tuned to assure convergence. For the sufficiently high value of the κ pa-

rameter navigation function (23) has a critical point associated with each

isolated obstacle, the saddle point. V has no other critical point other than

these points. Saddle points are unstable equilibrium points. In18 special con-

trol procedure for saddle point avoidance is described. It uses time varying

function to push the robot away from the unstable equilibrium point.

4.2. NF for star worlds

NF algorithm for the star world is an extension of the method described in

subsection 4.1. In this approach the position of the robot is transformed to

auxiliary sphere world:

r̂ =

(
1−

M∑
i=1

si(r)

)
r +

M∑
i=1

si(r)Ti(r) (32)

where

si(r) =
||r||2

∏M
j=1,j 6=i βj(r)

||r||2
∏M
j=1,j 6=i βj(r) + λsβi(r)

(33)

and

Ti(r) =
ρi(1 + βi(r))

||r − qi||
(r − qi) + pi, (34)

T0(r) =
ρ0(1− βi(r))
||r − qi||

(r − qi) + pi. (35)

In the above equations p0 and pi are centers of the spheres to which original

obstacles are transformed, ρ0 and ρi are their radii (they should fall entirely

in their original star obstacles), q0 and qi are are centers of the stars (points

from which all the rays cross the boundary of the obstacle once and only

once), β0 and βi are star obstacle functions.

Navigation function is given by the following equation:

V ,
Ĉ

(Ĉκ + β̂)
1
κ

, (36)

where

Ĉ , ||r̂||2 + θ2
kw

kw + ||r̂||2
(37)
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and

β̂0 , ρ20 − ||r̂ − p0||2, (38)

β̂i , ||r̂ − pi||2 − ρ2i . (39)

The form of the control law does not change in comparison to the sphere

world algorithm (26).

Fig. 8 presents intersection of the potential field for θ = 0. In Fig. 9 path

of the robot is shown. Fig. 10 presents time graphs of the robot coordinates.

Fig. 8. Intersection of the potential field for θ = 0 (notice that NF is a function of three

variables: x, y and θ; it can not be shown on a flat drawing)

5. Experimental setup

The mobile platform that was used in the presented experiments is the dif-

ferentially driven MTracker robot. It wast designed at Poznan University

of Technology, Institute of Automation and Robotics. It is controlled by a

two-level hardware controller: the low-level motion controller uses the signal

processor TMS320F28335 150MHz and the high-level one is a single-core

Intel Atom 1.2GHz board, equipped with WiFi radio used for remote man-

agement, task setting and communication with the external localization

system. Depending on the requirements the high-level controller works un-

der the Linux Ubuntu or Windows XP operating systems. The MTracker

robot is a small platform: its diameter is 0.14m, its height is 0.13m, its



June 19, 2018 2:5 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

18

Fig. 9. Path of the robot in xy-plane (solid line - experimental data, dashed line -

numerical simulation) (experimental results)

Fig. 10. Time graphs of error variables (experimental results)

weight is 1.4kg and its wheels have a diameter of 0.05m. The on-board

power supply is LiIo 3.7Ah battery that allows two hour active operation.

During the test the robot is localized by the OptiTrack motion cap-

ture system. On the top of the robot four infra-red reflecting markers were

mounted.

Wheel velocity control signals were scaled down when their value(s) ex-

ceeded the limit. This limit was set to 12rd/s, while the physical limitation

of actuators is 24rd/s. The lower value of the limit prevented robot wheels

from longitudinal slip. The obstacles were known a priori to prevent the
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Fig. 11. MTracker robot (Poznan University of Technology)

influence of measurement inaccuracies on the experimental results.

A special scaling procedure is applied to the wheel controls. The desired

wheel velocities are scaled down when at least one of the wheels exceeds the

assumed limitation. The scaled control signal ~us is calculated as follows:

~us = s~u, (40)

where

s =

{
ωmax
ωo

if ωo > ωmax

1 otherwise
, (41)

and

ωo = max{|ωr|, |ωl|}, (42)

where ωr, ωl denote right and left wheel angular velocity, ωmax is the pre-

defined maximal allowed angular velocity for each wheel. This scaling pro-

cedure preserves the direction of motion of the mobile platform.

6. Conclusion

In this article the overview of the control methods that use APFs and NFs

is presented. Effectiveness of presented methods was illustrated by simula-

tion results and experiments conducted using MTracker differentially-driven

mobile robot. Description of the experimental setup was included.
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