
August 18, 2018 2:27 WSPC - Proceedings Trim Size: 9in x 6in main

INTERACTIVE CO-DESIGN OF FORM AND FUNCTION

FOR LEGGED ROBOTS USING THE ADJOINT METHOD

RUTA DESAI∗, BEICHEN LI, YE YUAN and STELIAN COROS

Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA-15213, USA.
∗Email: rutad@cmu.edu

Our goal is to make robotics more accessible to casual users by reducing the
domain knowledge required in designing and building robots. Towards this

goal, we present an interactive computational design system that enables users

to design legged robots with desired morphologies and behaviors by specify-
ing higher level descriptions. The core of our method is a design optimization

technique that reasons about the structure and motion of a robot in a coupled

manner to achieve user-specified robot behavior and performance. We are in-
spired by the recent works that also aim to jointly optimize robot’s form and

function. However, through efficient computation of necessary design changes,

our approach enables us to keep user-in-the-loop for interactive applications.
We evaluate our system in simulation by starting with initial user designs that

are physically infeasible or inadequate to perform the user-desired task. We
then show optimized designs that achieve user-specifications, all while ensur-

ing an interactive design flow.

Keywords: Legged robots, Automatic robot design, Design optimization

1. Introduction

Even from a cursory inspection, it is clear that the morphological features of

living creatures are intimately related to their motor capabilities. For e.g.,

the long limbs and flexible spine of a cheetah lead to extreme speeds. There-

fore, roboticists often look to nature for inspiration.1–3 However, rather than

copying the designs that we see in nature, we are interested in beginning

to address the question: can we develop mathematically-rigorous models

with the predictive power to inform the design of effective legged robots?

Furthermore, we are interested in integrating such computational models

into interactive design tools that make robotics accessible to casual users.

Towards this goal, we develop a computationally efficient interactive

design system that allows users to create legged robots with diverse func-

tionalities, without requiring any domain-specific knowledge. Our system

automatically suggests required changes in order to achieve a specified be-

H. Montes et al. (eds.), CLAWAR 2018: 21st International Conference on Climbing and
Walking Robots and the Support Technologies for Mobile Machines,
Robotics Transforming the Future
© ELSEVIER

August 18, 2018 2:27 WSPC - Proceedings Trim Size: 9in x 6in main

126

havior or task performance. In particular, we focus on periodic locomotion

tasks characterized by footfall patterns, motion speed and direction. The

core of our system consists of a mathematical model that maps the morpho-

logical parameters of a robot to its motor capabilities. Equipped with this

model, we present an automatic design framework to co-optimize robot’s

structure and motion in a hierarchical manner. To deal with the computa-

tional complexity for user-interactivity, we leverage the Adjoint method.4

Our long term goal is to make the process of creating customized robots

highly accessible.5 In our prior work, we developed an interactive design

system for rapid, and on-demand generation of custom robotic devices.6 A

major limitation of our system was that it did not provide any feedback

about design improvements. To overcome this limitation, we take inspira-

tion from past work.7–9 However, instead of directly weaving in the robot’s

physical parameters within motion optimization, we establish a mapping

between them using the implicit function theorem.10 Our approach is also

complementary to evolutionary approaches.11 Rather than synthesizing de-

signs from scratch, we adopt a user-in-the-loop approach to allow the users

to guide the design process as they desire – thereby converging onto their

needed outcome much faster. Further, unlike evolutionary approaches that

provide no guarantees, our gradient-based optimization is locally optimal.

Finally, we validate our system in a physics-based simulation, through

various task-based robot design scenarios that are challenging for casual

users. We demonstrate how our system aids users in issues ranging from

physical in-feasibility of the design, to sub-optimality in task performance.

2. Interactive Design

Our interactive design system is rooted in a design abstraction that allows

us to combine off-the-shelf and 3D printed parts for designing robots.6 As

figure 1(a) illustrates, our graphical user interface (GUI) consists of a design

workspace for designing (left) and a simulation workspace for design testing

(right). The users can browse through various modules from a menu (top) in

the design workspace, and drag-and-drop them into the scene to construct

or modify a robot design. We assume that all parts of a robot’s articulated

structure (other than motors for joints) are 3D printed. We automatically

create these 3D printable connecting structures between actuated joints.

These structure geometries are updated with every manual user operation

or automatic design update that changes the robot morphology.

To enable this, we define a parameterized 3D printable connector module

(see fig. 1(b)) whose position and orientation can be updated interactively

with changes in the design. Each connector module has ‘virtual’ attachment

August 18, 2018 2:27 WSPC - Proceedings Trim Size: 9in x 6in main

127
a. b.

updated
connector

connector
module

actuated
joint

Figure 1. (a) GUI. (b) A parameterized 3D printable connector (orange) dynamically
updates to connect actuated joints. Our system’s capabilities are highlighted in our video.

points on its face that get updated based on the positions of the connector

and the motors. These attachment points are used to update the shape and

size of the connector’s convex hull structure as needed. The users can also

pause and restart the optimization at any point, to update the structure

manually in between for achieving desired aesthetics.

Although our interactive design interface is a powerful approach for for-

ward design, modifying designs to achieve a desired task requires domain

knowledge. We next present our design optimization framework, which au-

tomatically optimizes the robot’s form and behavior for a desired task.

3. Automatic Design Optimization

Designing robots with task-specific behaviors is highly skill-intensive and

time-consuming. One must decide the robot’s structure – physical dimen-

sions of its body, and its articulated parts, as well as the placement of

motors. One must then define how to control the motors for a co-ordinated

movement that achieves a task. The robot’s structure has a huge effect

on the tasks it can perform. Therefore, designers typically iterate back

and forth between physical and behavior design to create a task-specific

robot. To capture this coupling between the robot’s form and function, we

parameterize a robot with a set of structure parameters s, and motion pa-

rameters m. However, instead of treating m and s independently, our goal

is to represent robot motions as a function of its structure m(s). Apart

from being intuitive, such a representation allows us to solve for an opti-

mal task-specific behavior and design hierarchically, in a computationally

efficient manner enabling interactivity during design.

3.1. Parameterization

A larger variety of robots including manipulators, and walking robots are

composed of articulated chain like structures, in particular, of serially con-

nected and actuated links. Such robot morphologies can be well described

as kinematic trees starting at the root of the robot. The design parameters

https://tinyurl.com/RoboCodesign

August 18, 2018 2:27 WSPC - Proceedings Trim Size: 9in x 6in main

128

s is used to specify such robot morphology, which is given by:

s = (l1, . . . , lg,a1, . . . ,an, bw, bl) , (1)

where g is the number of links, li ∈ R is the length of each link, n is the

number of actuators, and ai ∈ R3 is the actuator parameters. For linear

actuators, ai defines the 3D attachment points, while for rotary actuators, it

corresponds to orientation of axis of rotation. Apart from these parameters

that represent the kinematic tree morphology of the robot, we use two

additional parameters bw and bl to represent the physical dimensions of

the robot’s body (width and length respectively). Likewise, the motion

parameters m = (P1, . . . ,PT) are defined by a time-indexed sequence of

vectors Pi, where T denotes the time for each gait cycle. Pi is defined as:

Pi =
(
qi,xi, e

1
i , . . . , e

k
i , f

1
i , . . . , f

k
i , c

1
i , . . . , c

k
i ,
)
, (2)

where qi defines the pose of the robot, i.e., the position, and orientation of

the root as well as joint information such as angle values, xi ∈ R3 is the

position of the robot’s center of mass (COM), and k is the number of end-

effectors. For each end-effector j, we use eji ∈ R3 to represent its position

and f ji ∈ R3 to denote the ground reaction force acting on it. We also use

a contact flag cji to indicate whether it should be grounded (cji = 1) or not.

3.2. Method Overview

Given an initial robot design and a task specification, our goal is to change s

and m (eq. 1, 2) to obtain a design better suited for the task. Users typically

define the initial design using our GUI. Various task descriptions such as

preferred motion direction, speed, motion styles (walking, trotting, turning)

etc. can also be specified with the GUI. These task specifications can then

be encoded into a cost function F (s,m). Assuming p to be the parameter

vector containing both structure and motion parameters p = [s,m], one

can search for an optimal p along the direction of F (p)’s gradient ∂F
∂p .

However, s and m are inherently coupled. Hence, instead of searching s and

m independently, we first update s, and then update m within a constrained

manifold that ensures the validity and optimality of m’s update, given s.

By constructing a manifold of structure and motion parameters of a robot

design, we can explore the sensitivity of robot’s motion m to its structure s.

Starting with an initial design (s0,m0) on the manifold, one can search for

s, and corresponding m(s) on this manifold, such that F (s,m) is minimized.

This dependency of m on s is captured by the Jacobian dm
ds (see Sec. 3.3).

This Jacobian is used to compute the search direction dF
ds for updating s

August 18, 2018 2:27 WSPC - Proceedings Trim Size: 9in x 6in main

129

within the manifold. However, dm
ds is expensive to compute. Therefore, we

further simplify this computation by using the Adjoint method (Sec. 3.4).

At each iteration i, an update s′ is proposed along the gradient direction
dF
ds with step δs. For each such update of s, multiple updates of m are

executed to obtain the corresponding optimal m′. Specifically, m is updated

in the search direction defined by Newton’s method (∂
2F

∂m2

−1
∂F
∂m) by δm step

obtained using line-search.12 Note that ∂2F
∂m2 and ∂F

∂m represent the Hessian

and gradient of F with respect to m respectively. If F (s′,m′) < F (si,mi),

the updates are accepted, else a new s′ is proposed along dF
ds with smaller

step size (δs2). We iterate over this procedure till F (si,mi) < threshold

implying that si and mi are optimal. A more detailed overview of this

algorithm can be found in the extended version of our paper on arXiv.

3.3. Coupling form and function for robot design

It is hard to analytically represent the dependency of robot’s motion on

its structure. Instead, we assume a manifold that relates robot’s struc-

ture and behavior capabilities, given a specific task: G(s,m) = 0, where

G(s,m) : Rns ×Rnm → Rnm . Such an implicit manifold between structure

and function can be converted into an explicit relation between the two

within a small region around a point P0(s0,m0) on the manifold, using the

implicit function theorem.10 The theorem states that when we change s0
and m0 by ∆s and ∆m, the change in the function ∆G should be zero to

remain on the manifold. Using chain rule to compute ∆G, we obtain the

following explicit relation between ∆s and ∆m:

∆G =
∂G

∂s
∆s +

∂G

∂m
∆m = 0 =⇒ ∆m = −

(
∂G

∂m

)−1
∂G

∂s
∆s (3)

where
(
∂G
∂m

)
and

(
∂G
∂s

)
represents the Jacobian of G(s,m) with respect to

m and s respectively.

To compute such a manifold, we start with a task-specific cost function

F (s,m). For each robot morphology s, there exists an optimal m∗ that

minimizes F (s,m). Hence, the gradient of F with respect to m at point

(s,m∗) should be zero. One can then search for an optimal s∗ along the

manifold defined by this gradient G(s,m) = ∂F (s,m)
∂m . An optimal s∗

on such a G(s,m) would automatically ensure a corresponding valid and

optimal m∗ for the task. For searching such an optimal s∗, we thus need to

solve the following optimization problem:

min
s
F (s,m) s.t. G(s,m) = 0 (4)

https://arxiv.org/abs/1801.00385v2

August 18, 2018 2:27 WSPC - Proceedings Trim Size: 9in x 6in main

130

where F (s,m) is the cost function; G(s,m) denotes the gradient of F (s,m)

with respect to motion parameters m. Empowered by the Jacobian dm
ds that

essentially encodes m(s) (eq. 3), we can define the search direction for s as:

dF

ds
=
∂F

∂m

dm

ds
+
∂F

∂s
=⇒ dF

ds
= − ∂F

∂m

(
∂G

∂m

)−1
∂G

∂s
+
∂F

∂s
. (5)

3.4. The Adjoint method

Computing dF
ds requires the calculation of the Jacobian dm

ds which is compu-

tationally very expensive. It requires solving ns linear equations (for each

column in Jacobian matrix ∂G
∂s), and the procedure gets very costly for large

ns. Instead, we use the Adjoint method to efficiently compute the gradient
dF
ds . This method formulates the computation of gradient as constrained

optimization problem, and then uses the dual form of this optimization

problem for faster computation.4 Other applications have also sought out

the Adjoint method for similar purposes in the past.13 In particular, dF
ds

takes on the following form using the adjoint method:

dF

ds
= λᵀ

∂G

∂s
+
∂F

∂s
, (6)

where λ is called the vector of adjoint variables. Such a computation of
dF
ds now involves solving only one linear equation to obtain λ, followed by

one matrix-vector multiplication and one vector addition (eq. 6). This is

more efficient as compared to solving ns linear equations for dm
ds earlier.

4. Results

We explore three simulated examples to study the utility and effectiveness

of our approach. Although, we only show our current results in simulation,

we have confirmed that the simulation matches physical results previously.6

When novices design robots, it can be hard for them to decide where the

actuators should be located and how they should be oriented for achieving

a specific behavior. Fig. 2(a) shows one such example of a ‘puppy’ robot

with three motors per leg. Even with enough number of actuators, the robot

can only walk in one direction (forward) owing to its actuator placements.

Parameterization of the actuator orientations ai in eq. 1 enables design

optimization to change them for equipping the robot to walk in any specific

direction. Without the optimization of such structural parameters, it may

be impossible to achieve such tasks (see fig. 2(b)).

Even when a design can theoretically achieve the desired behavior, it

may be rendered infeasible due to real world constraints such as collisions.

Fig. 3(a) shows a robot that can walk in the user-specified direction at

August 18, 2018 2:27 WSPC - Proceedings Trim Size: 9in x 6in main

131
a. b.

afterbefore

Iterations

S
id

e
w

a
y
s

m
o
ti

o
n

sp
e
e
d

 (
m

/s
)

speed achieved
desired speed

Motion
Optimization

1 10 100 1000 10000
0

0.1

0.2

0.3

Design
Optimization

Figure 2. (a) The initial design of ‘puppy’ robot can only walk forward. Our design

optimization enables the robot to walk sideways. (b) Optimizing motion parameters is

not sufficient and optimization of the structure parameters is essential in this example.

Figure 3. (a) Collision in a hexapod’s limbs at high speeds. (b) Accounting for col-

lisions in motion optimization prevents this, but also restricts the robot from walking

faster. (c) Instead, design optimization increases spacing between limbs and their lengths.

desired speeds. However, when walking speeds increase above 0.1 ms−1, the

robot’s limbs start colliding. It is hard to anticipate such issues a priori.

Along with helping the user to test such scenarios in simulation, our system

can also automatically prevent them by using feasibility constraints during

motion optimization. However, these constraints prevent the required range

of limb motions needed for fast walking, limiting the ability of the robot to

walk at desired speed (fig. 3(b)). Instead, design optimization changes the

design to achieve both these contradicting requirements (see fig. 3(c)).

Finally, designing robots for multiple tasks is also highly challenging,

especially if the tasks demand opposing design characteristics. Consider

the task of walking and pacing for a quadruped robot shown in fig. 4(a).

August 18, 2018 2:27 WSPC - Proceedings Trim Size: 9in x 6in main

132
a.

b.

original pace
optimized

walk
optimized

joint
optimized

desired speed

S
id

e
w

a
y
s

m
o
ti

o
n

sp
e
e
d
 (

m
/s

)

0

0.3

0.15

pace
optimized

joint
optimized

walk
optimized

original

pace

walk

n
o
 f

e
a
si

b
le

m

o
ti

o
n
s

fo
u
n
d

Figure 4. (a) A quadruped robot design that can only walk forward, is optimized for

pace, sideways walking, and jointly optimized for both these behaviors. (b) Jointly opti-
mized design achieves a reasonable trade-off between the performance of both tasks.

The original design can only walk forward owing to its actuator placements

(similar to the ‘puppy’ robot in fig. 2(a)). Its wider body and shorter limbs

prevent it from pacing in stable manner. Individually optimizing the design

for pacing and walking may not be sufficient for enabling the robot to per-

form both tasks. Pace-based design optimization generates a slim bodied

robot, while walk-based design optimization produces a wider body size to

increase stability during fast walking (see fig. 4(a)). Such a wider body in

turn, negatively affects the pacing behavior (fig. 4(b)). To achieve reason-

able performance for both these tasks, a trade-off is thus required. The in-

dividual requirements for each task Fi(s,mi) can be combined in weighted

manner into Fjoint(s,m) =
∑
wiFi(s,mi). Weights wi representing the

importance of each task can be set by the users. Such joint optimization

of walking and pacing (with w1 = w2 = 0.5) for quadruped in fig. 4(a)

succeeds in achieving the necessary trade-off as illustrated in the resultant

medium bodied optimized design, and the corresponding task performance.

Table 1. Design optimization statistics for example robots

Robot Number of Motion Opt. Design Opt. Time
Parameters Iterations Iterations (s)

Puppy (Fig. 2) 614 6207 32 107.66
Hexapod (Fig. 3) 1044 5013 53 97.47

Quadruped (Fig. 4) 1050 14873 100 124.47

Table 1 shows the design times for optimizing the designs of robots in

fig. 2, 3, 4. For quadruped in fig. 4 these statistics are reported for the joint

optimization scenario. Note that, even when its number of optimization pa-

August 18, 2018 2:27 WSPC - Proceedings Trim Size: 9in x 6in main

133

rameters are roughly similar to that of the hexapod, there is a significant

difference in the number of optimization iterations, and the time required.

This is because of the contradicting requirements that the two tasks de-

mand, making the problem more challenging. Also note that for each itera-

tion of design optimization, multiple iterations of motion optimization are

executed. However, as shown in the statistics, the large number of these

iterations are executed in minutes. Such computational efficiency is at the

core of interactivity in our system. Apart from an efficient implementation

in C++, a scalable approach using the Adjoint method enables the same.

5. Discussion and Future Works

We introduced an interactive robot design and optimization system that

allows casual users to create customized robotic creatures for specific tasks.

Apart from generating feasible behaviors, our system improves the perfor-

mance of robot through an automatic design optimization process. In the fu-

ture we plan to extend our design optimization technique for a broader class

of motions and behaviors, including climbing, carrying weights or avoiding

obstacles. Further, to find the right balance between automation and user

control during design, we plan to perform an extensive user study as well.

References

1. A. Crespi, K. Karakasiliotis, A. Guignard and A. J. Ijspeert, TRO 29 (2013).
2. K. Graichen, S. Hentzelt, A. Hildebrandt, N. Kärcher, N. Gaißert and

E. Knubben, Control Engineering Practice 42, 106 (2015).
3. M. Spenko, G. C. Haynes, J. Saunders, M. R. Cutkosky, A. A. Rizzi, R. J.

Full and D. E. Koditschek, Journal of Field Robotics 25, 223 (2008).
4. M. B. Giles and N. A. Pierce, Flow, turbulence and combustion 65, 393 (2000).
5. N. Bezzo, A. Mehta, C. D. Onal and M. T. Tolley, IEEE Magazine 22 (2015).
6. R. Desai, Y. Yuan and S. Coros, Computational abstractions for interactive

design of robotic devices, in IEEE International Conference on Robotics and
Automation, 2017.

7. B. Canaday, S. Zapolsky and E. Drumwright, Interactive, iterative robot
design, in ICRA, 2017.

8. S. Ha, S. Coros, A. Alspach, J. Kim and K. Yamane, Joint optimization of
robot design and motion using implicit function theorem, in RSS , 2017.

9. A. Spielberg, B. Araki, C. Sung, R. Tedrake and D. Rus, Functional co-
optimization of articulated robots, in ICRA, 2017.

10. K. Jittorntrum, An implicit function theorem, JOTA 25, 575 (1978).
11. N. Cheney, J. Bongard, V. SunSpiral and H. Lipson, On the difficulty of

co-optimizing morphology and control in evolved virtual creatures, in Pro-
ceedings of the Artificial Life Conference, 2016.

12. J. Nocedal and S. Wright, Springer, New York, USA, 2006 (2006).
13. A. McNamara, A. Treuille, Z. Popović and J. Stam, Fluid control using the

adjoint method, in ACM Transactions On Graphics (TOG), (3)2004.

