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The camera homography estimation involves using complex algorithms. They provide 
good results after some interactions, however the error model provided for such algorithm 
seems to be no appropriate for sensorial data fusion in real time. In this work a new 
methodology is proposed for camera homography and IMU data fusion. The experiment 
consists in rotate the camera. The experiment is done for frames.  Here it is presented results 
about the error in homography estimation with and without bias compensation. The last 
section concerns about the experimental results and conclusions about this approach.  
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1.   Introduction 

In the last decades there has been remarkable progress in new robotics 
applications [1]–[4]. Among the design requirements for such kind of robots, there 
has been an important effort in using low cost sensor technologies. Now days it is 
possible to acquire IMUs and cameras for a few dollars. Nevertheless, such kind 
of Microelectromechanical Systems demands, drift, nonlinear or thermal 
compensation.  

There are several approaches for inertial sensors drift and thermal 
compensation. However, a more effective one implementation applies first a bias, 
scale and misalignment effects compensation offline in addition with a real time 
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drift correction. Drift correction could be realized by using additional 
measurement systems [5], [6].  

Cameras are very useful sensors in many robotics applications. However, in 
order to obtain accurate measurement most of the cheaper ones, not only need 
calibration but also distortion compensation [7]–[9]. In addition, in order to track 
correctly image features, it is necessary to estimate the homography between 
consecutive images.  

Camera homography estimation involves using complex algorithms [9-10]. 
Even though, these algorithms provide good results after some interactions, the 
error model provided for such algorithm seems to be no appropriate for sensorial 
data fusion in real time. 

Therefore, it is necessary to estimate an appropriate homography error in real 
time for data fusion. In this work a new methodology is proposed for camera 
homography and IMU data fusion.  

2.   IMU and Camera Modelling 

2.1.   Inertial Measurement Unit Error Modelling 

Inertial Measurement Units are usually formed by an array of three gyrorates and 
three accelerometers. Such kind of sensors present bias drift, scale and 
misalignment errors. These errors could be characterized approximately by the 
following equations [6], 

B N M v                                                                                          (1) 

B M v                                                                                            (2) 

Where,  
T

x y z       are the accelerations in IMU frame, 

T

x y z        are the rotational velocities in IMU frame, 

T

x y zB B B B       are the gyrotates bias,  

T

ax y zB B B B      are the accelerometers bias, 

T

x y zv v v v        are gyrorates white noise, 

T

x y zv v v v        are accelerometers white noise, 

T

x y z          and 
T

x y z          represent the 

gyrorates and accelerometers errors in IMU frame respectively. Additionally, 
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N  is a matrix that considers the acceleration effects in gyrorates outputs, 

M  and M are matrices that consider scale and misalignment errors in IMU 

unit. 
There are some calibration algorithms that consider bias, scale and misalignment 
compensation offline. Nevertheless, it will be very useful if a real time drift 
correction is implemented. Such kind of correction could be realized by using 
GPS, electronic compass, active ranging sensors or cameras.  

2.2.   Camera Model 

There are several image camera models that could be applied. However, this work 
will be limited for such applications where scene depth is small compared to 
average distance to camera. Therefore, the pinhole camera model is chosen to map 
any visible point in the fixed reference frame (x,y,z)  to image plane (u,v). 

2.2.1.   Pinhole Camera Model 

In this approximation, the origin of camera reference frame matches with optical 
center and z axis matches with camera optical axis. In addition, the image plane 
(u,v)  is not only parallel to (x,y) plane, but also u and v axis are parallel to x and 
y axis respectively. 

 
 

Figure 1. Pinhole Camera Model. Coordinates reference frames. 

Any point in reference frame (x,y,z)  could be mapped to image plane (u,v) 
by the following approximation, 

  2 21xk
u x x y

z
                                                                  (3) 

  2 21yk
v y x y

z
                                                                (4) 
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Where, xk and yk are the effective focal lengths of the camera.   is a 
parameter that approximates radial optical distortion. If  parameter is positive 
the image suffers a pincushion effect, but, if it is negative the image suffers a 
barrel effect. The parameters xk and yk could be obtained using an appropriate 
calibration. Then, radial distortion could be compensated by using Fitzgibbons 
approach [6], 

 2 21
CF

CF

u
u

u v


 
                                                                                                     (5) 

 2 21
CF

CF

v
v

u v


 
                                                                                             (6) 

Where, CF  is an appropriate chosen parameter that compensates radial 
optical distortion. 

2.2.2.   Affine Transformation 

In order to fusion IMU and camera data is necessary to track image features in 
video frames. Therefore, it is necessary to analyze how two consecutive frames 
changes. This relation between two images could be modeled with affine 
transformation, 

2 1

2 1

1 1

u u

v H v

   
      
      

                                                                          (7) 

Where,  1 1,u v  corresponds to pixel coordinates from first image,  2 2,u v  
corresponds to pixel coordinates from second image and H is the homography 
matrix. The affine transformation homography matrix has the following form, 

0 0 1

a b c

H d e f

 
   
  

                                                                             (8) 

Where, c and f reflect u and v translations respectively. In other hand, a, b, d 
and e are used to model rotation, shear and scale changes. 

2.2.3.   Homography Matrix Estimation 

The homography matrix estimation is a complex process. Various algorithms have 
been proposed in order to estimate the homograpy matrix between two images. 
However, must of them consider the following steps: feature detection, feature 
matching and fitting matrix parameters [10].  The most effective image features 
for feature matching are corners and SIFTs (Scale Invariant Features Transform). 
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The feature matching could be implemented with the Scott and Higgins 
Features Association Algorithm [11]. On the other hand, the matrix parameters 
could be fitted with RANSAC algorithm (Random Sampling and Consensus 
Algorithm)[12]. 

Even though, the RANSAC algorithm is a powerful tool to estimate 
homography matrix, it does not ensure an unbiased solution. In addition, it does 
not provide any information about the variances of matrix parameters. Such 
information could be very useful for sensorial data fusion. 

3.   Homography Matrix Statistics 

The uncertainty around homography matrix parameters could be obtained with 
the help of feature matching matrix. Even though, this matrix was used by 
RANSAC algorithm to find homography matrix parameters, it contains outliers 
data points. These outliers could be produced by low contrast, non-uniform 
lighting and blurring effects.    

3.1.   Homography Error Model Estimation.  

3.1.1.   Bias and Variance Estimation of parameter c and  f 

For n samples, c and f bias could be estimated with, 

2 1

1 2 1

ˆ ˆˆ1
ˆˆ ˆ

n
k k k

kk k k

cc u ua b

f v vn fd e


 

        
          

         
                                    (9) 

And variances are estimated with, 

 
 

2
2

2 1 1

2 2
1

2 1 1

ˆˆ ˆ1

1 ˆ ˆˆ

n k k k
ck

kfk
k k k

u au bv c c

n v du ev f f


 

                  

                       (10) 

3.1.2.      Bias and Variance Estimation of parameter a and d 

For n samples, a and d bias could be estimated with, 

2 1

1

1 2 1

1

ˆ ˆ
ˆ

1
ˆˆ ˆ

k k

n
kk

kk k k

k

u b v c c
a

ua

d n v ev f f
d

u



 

   
 

           
  

                         (11) 

And variances are estimated with, 
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                       
       

                           (12)         

3.1.3.      Bias and Variance Estimation of parameter b and e 

For n samples, b and e bias could be estimated with, 
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                                       (13) 

And variances are estimated with, 
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   
                  
  
  


                  (14)       

3.2.    Translation, Rotation and Scale Estimation.  

The parameters and variances calculated before could be used to estimate any 
change in translation, rotation or scale. This information could be used for sensor 
fusion. 

3.2.1.   Translation Estimation 

A change in image translation is directly related with c and f parameters, 
       

u c

v f

   
      

                                                                                                 (15) 

The variance could be approximated as follows, 
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22
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cu

fv



  

   
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(16) 

3.2.2.   Rotation Estimation 

A change in image rotation could be calculated with a and b parameters, 
       

ˆ
atan

ˆz

b b

a a




 
     

                                                                               (17) 

Meanwhile, if rotation is small, the variance could be approximated as follows, 
2

2 2 2
2 4

ˆ1
ˆ ˆz b a

b

a a  
           

                                                                      (18) 

3.2.3.   Scale Estimation  

Any change in image scale could be calculated with, 

2 2ˆˆus a b                                                                                             (19) 

 variance could be approximated as follows, 
2 2

2 2 2

2 2 2 2

ˆˆ4 4
ˆ ˆˆ ˆ

su a b

a b

a b a b
  

  
          

                                                      (20) 

4.   Data Fusion Methodology 

It is important to stablish a relationship between IMU and camera data. The 
camera homography could be useful to calculate inertial sensors bias if the IMU 
and camera reference frame are the same. Therefore, any change in the image 
plane is related with changes in IMU frame, 
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                                  

                                   (21) 
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Where, lz is the average distance from camera reference frame origin to 
scene plane. This last equation (21) could be used for data fusion. However, 
accelerometers and gyrorates bias drift correction needs additional measurement 
systems to be estimated simultaneously. 

One possible solution is based that in some applications translations and 
rotations movements are done separately. Therefore, bias correction to 
accelerometers or gyrorates could be applied independently.   

4.1.    Accelerometer Bias Correction.  

The accelerometer bias correction could be estimated as follows, 

2 2
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2 2
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1

1

n
i i i m i m
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i m x xaxk

n
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i m y y

z c z c
a

n m m T k m T kb

b z f z f
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 
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 

 
             





                                       (22) 

Where, axi and ayi are accelerometers outputs, m is a parameter that adjusts 
acceleration estimation average. 

4.2.    Gyrorate Bias Correction.  

The gyrorate bias correction could be estimated as follows, 
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                       (23) 

Where, Ωxi, Ωyi and Ωzi are gyrorates outputs. 

5.   Experimental Results  

The proposed methodology approach is tested for estimating the heading angle of 
camera. The algorithm uses the Scott and Higgins Features Association, 
RANSAC and a Kalman filter algorithms to fuse camera and IMU data.  

5.1.    Experimental Setup.  

The utilized hardware consist in a color video camera 240x320 and a IMU 
MPU6050 connected to a Pentium i5 using a frame grabber and a Raspberry PI 3 
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respectively. The sampling rates are chosen to operate the camera at to 2 
images per second and the IMU to 20 samples per second.  

5.2.    Kalman Filtering.  

The Kalman filter (please see figure 2) is tuned with the following parameters,  
T

k k k kx b    
 ,          0ku  , 0k  , 1k  ,  
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Where,   is heading angle,   is the heading angle rate, b is gyrorate bias and 

k  is the gyrorate output.  

 
Figure 2. Kalman Filter Algorithm. 
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5.3.    Result Analysis.  

The experiment consists in rotate de camera 30 degrees. The experiment is done 
for 14 frames (See figure 3). The homography is first calculated for each pair of 
frames. Then, homography bias is corrected with help of equation (9). The root 
mean square error homography is shown in the table 1 for uncompensated and 
compensated homography. It is clear that camera provides more accurate 
estimation, however it is slower than gyrorates. Now, the Kalman filter is used for 
fuse camera and gyrorate information (figure 4). Here, gyrorate data is available 
for each filter correction step, but camera data is only available each ten steps.  
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Frames with corners detection. 
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Figure 4. Heading angle estimation. 

 
Table 1: Root mean square error in homography estimation for 800 interactions RANSAC with and 
without bias compensation. 

 Frames 
0 to 1 

Frames 
1 to 2 

Frames 
2 to 3 

Frames 
 3 to 4 

Frames 
4 to 5 

Frames 
4 to 6 

Frames 
6 to 7 

without 
compensation 

1.1551 
 

0.9389 
 

4.3063 
 

0.2882 2.7688 
 

2.8641 
 

4.0229 
 

with 
compensation 

0.9295 
 

0.5755 0.9494 
 

0.2877 
 

0.9075 
 

0.5464 2.5672 

 Frames 
7 to 8 

Frames 
8 to 9 

Frames 
9 to 10 

Frames 
10 to 11 

Frames 
11 to 
12 

Frames 
12 to 
13 

Frames 
13 to 
14 

without 
compensation 

1.8736 
 

0.7202 
 

0.4909 
 

0.7146 
 

2.0290 
 

2.8287 
 

4.3092 
 

with 
compensation 

1.5800 
 

0.3466 
 

0.1091 
 

0.4921 2.0158 2.4149 
 

3.1275 
 

 

6.   Conclusions  

The homography error model estimation was not only a useful tool for data fusion, 
but also for improving homography. The bias compensation improves system 
velocity, since RANSAC interaction could be diminished. However, in this 
aspect, more research must be done in order to obtain an appropriate value of 
interactions. Also, lot of further work is necessary in order to improve data fusion 
methodology. It is interesting, to analyze fusion with two or more cameras, other 
sensors technologies or applying artificial intelligence algorithm approaches.   
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