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This work is aimed at discussing the solution of the inverse kinematic problem using Multi-
Objective Evolutionary Algorithms (MOEA) for a vehicle-arm redundant robot. A 
simplified 5 DoF model was used to simulate the problem and the objective functions were 
properly selected assuming underwater operation. In addition, we present a review of the 
most important techniques used for solving the inverse kinematic problem, focusing at the 
end on the application of a Non-Dominated, Sorting, Elitist MOEA with nonlinear 
constraints. 

1.   Introduction 

Currently, robotics plays an important role in increasingly complex engineering 
applications, with high demands in terms of dexterity, such as the performance of 
underwater robots; which in most cases are redundant [1-4].  In this work, we are 
interested in the case of redundant systems composed of a mobile platform and a 
manipulator arm, that could be used for ship’s hull cleaning and maintenance. 
     The buildup of organisms on the side of boat hulls, propellers, and other 
infrastructure in marine environments increases fuel consumption and 
ecosystem’s problems of invasive species.  Many ship owners periodically deploy 
divers to inspect ship hulls and remove the buildup of organism, known as 
Biofouling [5].  Hull cleaners are autonomous or semi-autonomous underwater 
robot used to scrub hull clean while still in the water.  The use of Robot cleaners 
can result in fuel savings and reduce the risk of the task itself. 
    There are several functional prototypes and patents developed for the 
inspection and cleaning of underwater surfaces. We can classify the different 
cleaning systems as, fastening methods to the hull surface and maneuverability 
mechanisms [6-9].   The results of this work will be applied to development of a 
manipulator on a free-floating submarine vehicle for inspection and cleaning of 
the target. Cui and others [10] reviewed the different challenges in terms of 
navigation of a mobile base and manipulation in conjunction with a robotic arm 
from four important aspects: positioning of the mobile robot by means of (GNSS), 
navigation based on vision and visual servo, robotic manipulation, planning and 
control of trajectories.  
    The present development analyzes the implementation of a method for the 
control of a redundant robot performing multiple prioritized tasks in the presence 
of limits in the joint range, speed and acceleration / torque efficiently. 
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     The redundancy problem is described such that, given a desired trajectory, 
∈ , defined in a coordinate system for the end effector of a manipulator, 

it requires the corresponding displacements in the joint space of the robot, the sets 
of vectors ∈ , where , using the definition: , where 
∙  is the direct kinematics, which is nonlinear and differentiable with a structure 

and known parameters, for a given manipulator robot. 
Several methods have been proposed as resolutions for the redundancy problem, 
and to characterize multiple approaches, two general methods have been proposed 
[11], indirect methods and direct methods.  Indirect methods, such as the 
Pseudoinverse method, the Extended Jacobian method, kinematic optimization 
methods and the Lyapunov method or gradient method, are differential methods 
that are computationally intensive, so they are developed offline under previously 
specified optimization criteria.  The main disadvantages with this type of methods 
are that solution of the optimization problem only guarantees to be locally optimal 
and that the algorithms used exhibit numerical difficulties when the manipulator 
is close to kinematic singularities [12-14].  Differential control algorithms must 
be initialized with some joint configuration, θ, from the set of possible solution.  
Then the manipulator is kinematically controlled by the desired trajectory while 
remaining within the set of solutions [15].      
On the other hand, there are direct methods based on the approach of solving the 
inverse function of ∙  in a closed form or approximate form.  Direct methods 
seek the explicit resolution of redundant degrees of freedom.  These tend to be 
fast, but generally require strong assumptions regarding the structure of the set of 
possible solutions [11]. Generally, task dependent constrains need to be specified 
to accommodate the redundancy. 
     The inverse functions are local and cyclical and because their evaluation is 
frequently rapid, when these can be determined, they are computationally suitable 
for real time control [16].  It must be considered that expressions in closed form 
for inverse kinematics are difficult if not impossible to determine, however it is 
possible to adapt approximate forms of these using neural networks or other 
approximation methods for nonlinear functions. 
     Traditionally, three models have been used to solve the inverse kinematic 
problem: geometric models, algebraic models and iterative models [17]. The use 
of geometric models is limited by the complexity of the structure, while algebraic 
models do not guarantee a closed form solution [18].  In iterative methods, 
convergence depends on the initial point of evaluation and are computationally 
prohibitive, which is why many researchers have focused their work on solving 
inverse kinematics using Artificial Neural Networks (ANN). 
     The application of Neural Networks to construct self-organized maps of the 
inverse kinematic problem, are well referenced [18-20]. In those works, the 
kinematics of non-redundant and redundant robots is solved after training the 
ANN for a period, yielding a unique solution corresponding to the desired position 
in the workspace.  Recently, the work of hybrid approaches based on Neural 
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Networks has allowed the training of ANN with variable optimization criteria 
over time, which was not possible on earlier works [10]. As example, Jin, L. and 
Li, S [21], use a Dynamic Neural Network to solve a problem of optimization of 
the manipulability of a redundant robot, transforming it into the resolution of a set 
time variants non-linear equations.  However, the major drawback of using ANN 
are still the difficulty of how to collect training sets, and that the training process 
when gradient-based learning algorithms is very slow, especially for a complex 
configuration, or a large set of training data. 

2.   Genetic Algorithms and Multi-Objective Evolutionary Algorithms 

When formulating the redundancy problem, as a case of optimization, the 
techniques based on Genetic Algorithms (GAs), take relevance.  The GAs are 
methods that solve constrained and unconstrained optimization problems and the 
popularity of their use is because they are naturally appropriate, with some 
modifications, for cases of multi-objective optimization.  GA allows a population 
composed of many individuals to evolve under specific rules of selection towards 
a state that maximizes fitness (function aptitude) or cost function.  The GA 
subsequently modifies the population of individuals, which represent the possible 
solutions.  On successive generations, the population evolves towards an optimal 
solution. This method solves a variety of optimization problems such as 
discontinuous, non-differentiable, stochastic or highly non-linear functions, 
which are intractable under other optimization techniques [22]. 
     Non-dominated Sorting Genetic Algorithm (NSGA) [22], was one of the first 
MOEAs, and from its use the following disadvantages have been highlighted [23]: 
a high computational cost, lacks elitism, and finally must specify the exchange 
parameter, which is a parameter that ensures diversity and equivalence in the 
solutions.  From here on, various modifications and new MOEAs algorithms have 
been developed [23, 24]. 

2.1.   MOEAs Constraints Management 

This work involved the optimization of multiple cost functions to solve the 
kinematic redundancy of a robot manipulator, subject to several constrains 
equations, which are related to the task and the robot configuration itself.  In 
general, an optimization problem can be defined as, 

 
min max 									 ,													 1,2, … , ; 

                   	 					 0,												 1,2, … ;                           (1)  
                  0,													 1,2, … ; 

    														 ,			 1,2, … , ; 
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where 	  are the fitness or cost functions and  0 and 0 
are inequalities and equalities constraints, respectively.  The constrained 
optimization divides the search space into two regions; feasible (those solutions 
that comply with the constrains) and not feasible.  It’s clear that the set of optimal 
solution, Pareto-optimal, must belong to the feasible region. A possible solution 
would be for the MOEA to assign more pressure to the group that violates the 
constraints to a lesser degree, so in this way the algorithm is provided with a 
direction in the search for a feasible region [22]. 
     Another popular technique for handling constraints is the penalty function 
approach, in which, the objective and the normalized constraints are added and 
multiplied by a factor that penalizes them based on a minimization process. A 
drawback is that this factor needs to be updated according to some strategy. In the 
literature we can find several works [17-27], which present static and dynamic 
strategies for updating the penalty factor according to the objectives. The quality 
of the solution obtained depends on factor’s quality.   Recently, in the works of 
Fan, Z. et al. and Chehouri, A. et al.  [27, 28], the authors claim that the 
penalization approach deviates from the philosophy of evolution of the algorithms 
and propose a technique that preserves the main concept of the GAs, developing 
rules that include the value variations of the constraints for the selection and 
generation of new individuals.   In this work, the last approach was used for 
handling the nonlinear equality constraints. 

3.   Inverse Kinematic Solution of a Vehicle-Arm Robot 

In this section we present the solution of the inverse kinematic problem of a 
vehicle-arm robot model using a Non-Dominated, Sorting, Elitist Algorithm 
MOEA II, developed by Deb, K. [23].  The fitness functions were selected to 
maximized manipulability and minimized joint angle average displacement when 
moving to consecutive points of the trajectory.  
For the application of the MOEA II, the individuals of a population are defined as 
configurations, q, of the vehicle-arm, which will be used to evaluate two fitness 
(objective) function. Figure 1 shows the 5 DoF planar model and the generalized 
coordinates used.   
In the context of evolutionary multi-objective minimization problems, the term 
dominance refers to the case when the evaluation of a fitness functions, , for an 
individual q1 gives smaller values than for other individual q2: 

 
				∀	                                                   (2) 

				 	 	  

Thus, q1 dominates q2. The group of individuals that have noninferior fitness 
function values are non- dominated by any other individual and its set is called a 
pareto front. Therefore, for each individual on the Pareto front, one fitness 
function can only be improved by degrading another. 
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Figure 1. Vehicle – Manipulator Schematic: The generalized coordinates of the robot, q, are shown. 

3.1.   The MOEA II algorithm 

The MOEA II was implemented in MATLAB. The first step in the algorithm is 
creating an initial population (200 in our case) which is feasible with respect to 
the nonlinear constraints and the joint angles bounds. In this algorithm both, the 
objective function and constraints values are used to obtain scores for the 
population.  
After each next generation is created from selected parents, the children are 
obtained by mutation and crossover.  Afterward, all infeasible individuals are 
assigned a lower rank than any feasible individual. Within the infeasible 
population, the individuals are sorted by an infeasibility measure, which we take 
as the value of the constraints function. For the new generation, the current 
population is combined with the children. 
For a controlled elitist GA, it is important to maintain the diversity of population 
for convergence to an optimal Pareto front (23). The diversity is increase by 
keeping some of those individuals of the current population that are relatively far 
away of the pareto front. In addition, the number of individuals on the Pareto front 
(elite members) is limited using a fix fraction.  

3.2.   The Model and Simulation Results of the Vehicle-Arm system 

 The direct kinematic function , in equation 3, defines the position and 
orientation of the end effector , 	,  in terms of the generalized coordinates 
, , , , , as shown in figure 1. 

 

f
0 1 ∗ 2 2 ∗ 2 3 3 ∗ 2 3 4
1 1 ∗ 2 2 ∗ 2 3 3 ∗ 2 3 4

2 3 4
				 3  

 
For the intended application, it is important to assure a manipulability as high as 
possible to exert the require forces while following the desired trajectories on the 
vessel surface.  Thus, Yoshikawa’s manipulability index was used as the first 
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Fitness Function.  A second function, the square root of the difference between 
consecutive configurations, , is used to assure that the optimal 
configuration of two consecutive points in the trajectory are close.     In addition, 
since it is easier to control the joint angles than the vehicle position in the water, 
a reducing gain, , is used for the first two coordinates in the second fitness 
function to reduce as much as possible the motion of the vehicle or platform.  
Thus, the optimization problem is stated as: 

min						

															
1

1
; 		where	

																		 5 			 

   Subject to:       f    ;     . 
 
 
 
 
 
 
 
 

  
Figure 2.  Effect of applying different gains to q0 and q1. with K=10 (left) and K=100 (right),   
 

Where , is the desired position and orientation of the end effector,  and  are 
the lower and upper bound of the joint angles, and  is the Jacobian matrix, 
which obtained by direct differentiation of equation.  Figure 2, shows some of the 
typical results obtained when a series of positions of the end effector are given 
and a fixed orientation pointing in the positive x direction is asked.  The effect of 
the gain K can be appreciated, since the consecutive vehicle/platform positions 
stay closer when we increase its value.  When only K1 and K2 are increased, the 
relative displacement of the vehicle between successive configurations is reduced 
(shown in the text box for last two), as expected.  
With these results we have shown that a non-dominated elitist sorting 
evolutionary algorithm can be used to solved effectively the inverse kinematic 
problem of a redundant manipulator using multi-objective optimization.  The 
fitness/objective functions have been selected bearing in mind the characteristics 
of the task and still need to be validated in actual operational conditions. 

4.   Conclusions and Future Work 

The final individuals or joint coordinates were effectively selected out of the 
pareto front by choosing the best solution for the smoothness cost function, since 
the values of the manipulability does not vary much for the different solutions of 
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the front.  It is worth to mention that, to generate populations that expand into 
feasible and not feasible regions the number of initial individuals was increased 
up to 200.   The next step in this research is to simulate the complete 12 DoF 
system (6 DoF for the vehicle and 6 DoF on the arm) and implement an Impedance 
Control System on a ground vehicle + arm manipulator, having the kinematic 
optimization technique presented in this work as an offline process. 
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