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The paper describes kinematic control for hexapod robot with three–segment
articulated body. Forward and inverse kinematics for articulated body de-

scribed. Static stability studied in case of climbing the so–called cliff obstacle.

Conditions for static stability during climbing sequence provided.
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1. Introduction

Study of walking machines is a rather old question. Starting from Ancient

China mechanical designs1 and ending with state of the art reinforcement

learning2 and model predictive control approaches.3 Multi–legged walking

robots are complicated systems in terms of control and planning due to

significant number of degrees of freedom (d.o.f.) and actuators, complexity

of the environment and etc. Nowadays the most complex and robust walking

machines are made by Boston Dynamics company.4 Its robots are capable

of working in human environment and outdoors. The basis of their approach

is model predictive control and non-linear optimization.

The main subject of article is to find simple approaches for building

control algorithms for multi–legged walking robots with articulated body.

It is clear that robots with flexible body can overcome obstacles that are

more complex.

For that purpose, a hexapod robot with three–segment body was studied
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in task of overcoming a cliff obstacle using Coulomb forces with coefficient

of static friction less than 1.

Static stability equations were resolved for robot in different config-

urations with additional assumptions of symmetry. Motion sequence for

climbing on a cliff with static stability preservation was build and verified

in computer simulation.

The designed approach for static stability study can be further used for

other types of obstacles, such as narrow passage, sharp ditch, windrow and

so on. Besides of that, the approach can be applied for different models of

robot’s body without any modifications.

2. Robot Kinematics

Let us consider robot depicted on figure Fig. 1. It has six so-called insec-

tomorphic legs, i.e. insect-like leg kinematics. Each leg has three degrees

of freedom. Body consists of three rigid segments connected with hinges to

each other. Body that consists of several segments connected to each other

with controllable joints and can change its geometry is called articulated.

Fig. 1. Hexapod robot with articulated body.

The total number of degrees of freedom (d.o.f.) for specified robot is 26:

• 3 d.o.f. for each leg, i.e. 18 d.o.f. for all legs;

• 2 d.o.f. for body segments;

• 6 d.o.f. for the whole system as one single body.

Overall it’s 26 d.o.f. and 20 of them can be controlled with actuators in-

stalled in corresponding rotational joints. Leg kinematics is well–known and

was already studied in all details.



August 17, 2018 10:55 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

327

3. Cliff Obstacle

Cliff obstacle consists of three planes two of which are horizontal and one

is vertical as depicted on Fig. 2.

Fig. 2. Cliff obstacle.

The distance between two horizontal planes is equal to H. Robot starts

from the lower horizontal plane and his goal is to climb up the higher

horizontal plane using only the Coulomb friction. To overcome cliff obstacle

robot moves using so-called gallop gait when a pair of symmetrical legs from

left and right sides of the robot are in transition state and the others are

in support state, i.e. in every moment of time there are four legs in contact

with obstacle. Body kinematics will be considered in next section.

4. Body Kinematics

Robot’s body consists of three equal rigid segments connected to each other

with rotational joints with axes aligned in lateral direction of the body.

Each segment has a pair of legs connected. Additional joints with angles δ1
and δ2 in the robots body allow to bend body and follow the surface shape,

shift legs mounting points towards to supporting surface. To find body joint

angles the following procedure is defined.

Initial and goal poses for middle segment are connected with a cubic

spline curve, which represents target trajectory for middle segment. If seg-

ments and their trajectory are known, then the task is solved through simple

linear approximation as depicted on Fig. 3.

To keep the contact points on the goal trajectory all joints should act in

a coordinated way. At every moment of time all joint coordinates must be
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Fig. 3. Body inverse kinematics through simple linear approximation.

updated to keep the end effectors at the goal position. Additional mobility

inside the robots body should be taken into account because all legs are

connected to the different segments. Target point Ri for i-th leg is given

in global reference frame. To obtain leg joint angles the inverse kinematic

equations are used, point Ri must be translated into legs reference frame.

To manage all relative coordinate transformations of shifts and rotations

between body segments, legs and joints, homogeneous coordinates are used.

Calculation of all coordinate transformation for each leg at every moment

of time can be easily done automatically through well-known kinematics of

robot. The main differences between articulated body and single segment

body are:

• Higher ability to overcome obstacles – segments follow the surface;

• Articulated body is able to shift mounting points of its legs – service

region is not a constant, i.e. in some conditions robot can reach contact

surface and put legs on it;

• Center of gravity is shifted in a wider range with all else parameters

being equal – critical parameter in static stability preservation in extreme

conditions.

5. Cliff Climbing Stability

The system is stable when sums of all external forces and all momentums

are equal to zero.


N∑
i=1

Ri + P = 0

N∑
i=1

[ri ×Ri] + [rc ×Rc] = 0

(1)
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The following configurations of supporting legs displacement should be

studied for static stability:

• All legs on some horizontal plane. This case is already well studied;

• Front legs lean against the vertical plane and rear legs stand on the lower

horizontal plane. Let us refer to this configuration as Number One.

• Front legs are placed at the upper horizontal plane, while the rear legs

stand on the vertical plane. Let us refer to this configuration as Number

Two.

• All legs stand on the upper horizontal plane – this case is similar to the

initial one.

Considering the robot as a slow moving system at every moment of time

let us find conditions for static stability. Reference frame Oxyz is defined

as depicted on Fig. 4.

5.1. First Configuration

Fig. 4. First static configuration.

Contact points of the legs for first configuration are as follows:

r1 = (d, 0, h), r2 = (−d, 0, h), r3 = (d, l, 0), r4 = (−d, l, 0). (2)

There is a reaction Ri acting on the robots legs at each contact point:

Ri = Ni · ni + F iτ · τ i + F iν · νi (3)

The τ i and nui vectors have the following coordinates:
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n1 = (0, 1, 0), τ1 = (0, 0, 1), ν1 = (1, 0, 0),

n2 = (0, 1, 0), τ2 = (0, 0, 1), ν2 = (1, 0, 0),

n3 = (0, 0, 1), τ3 = (0, 1, 0), ν3 = (1, 0, 0),

n4 = (0, 0, 1), τ4 = (0, 1, 0), ν4 = (1, 0, 0).

(4)

The center of gravity has coordinates:

rc = (0, yc, zc) (5)

The gravity force P acts on the center of gravity of the robot:

P = (0, 0,−P ) (6)

The equations of static stability for first configuration are as follows:



F 1
ν + F 2

ν + F 3
ν + F 4

ν = 0,

N1 +N2 + F 3
τ + F 4

τ = 0,

F 1
τ + F 2

τ +N3 +N4 = P,

N1h+N2h+ Pyc = l(N3 +N4),

d(F 1
τ +N3) = F 2

τ d+ F 1
ν h+ F 2

ν h+N4d,

d(F 3
τ +N1) = F 4

τ d+N2d+ F 3
ν l + F 4

ν l.

(7)

The total number of equation is six. The number of unknown variables

is twelve. Let us assume that the friction forces are modelled with Coulomb

mathematical model:

F ij = kij ·Ni, where kij is coefficient of friction for i-th leg in j-th direction.

After substitution of the Coulomb friction model, the Eq. (7) will trans-

form into the following system:



N1k
1
ν +N2k

2
ν +N3k

3
ν +N4k

4
ν = 0,

N1 +N2 +N3k
3
τ +N4k

4
τ = 0,

N3 +N4 +N1k
1
τ +N2k

2
τ = P,

N1h+N2h+ Pyc = l(N3 +N4),

d(N3 +N1k
1
τ ) = dN4 + dN2k

2
τ + hN1k

1
ν + hN2k

2
ν ,

d(N1 +N3k
3
τ ) = dN2 + dN4k

4
τ + lN3k

3
ν + lN4k

4
ν

(8)

The number of unknowns variables remains the same, and besides

Ni > 0. Let us introduce additional assumptions that the left and the

right side of the robot are loaded equally and coefficients of friction are the

same between left and right legs:
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

k1ν = −k2ν = kν ,

k3ν = −k4ν = kν ,

k1τ = k2τ = kuτ ,

k3τ = k4τ = kdτ ,

N1 = N3 = Nu,

N2 = N4 = Nd.

(9)

The system of three equations and four variables obtained:


Nu +Ndk

d
τ = 0,

2Nd + 2Nuk
u
τ = P,

2hNu + Pyc = 2lNd.

(10)

Number of unknowns is still greater than number of equations. One

more assumption must be introduced:

kuτ = kdτ = kτ > 0 (11)

Finally, the system of three equations and three unknowns is obtained:


Nu = Ndkτ ,

2Nd + 2Nukτ = P,

2hNu + Pyc = 2lNd.

(12)

Let us find unknown reactions Nu, Nd and kτ . From first and second

equations of Eq. (12) follows:

Nu = Ndkτ ,

Nd =
P

2(1 + k2τ )
.

(13)

After substituting Eq. (13) to the third equation of Eq. (12) we have

quadratic equation relative to kτ :

yck
2
τ + hkτ + (yc − l) = 0 (14)

There are two solutions for quadratic Eq. (14), but only one satisfies

condition 0 < kτ < 1:

0 < kτ = −
h−

√
h2 − 4y2c + 4lyc

2yc
< 1 (15)
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5.1.1. Dimensionless parameters

It is easy to see that the Eq. (15) for kτ depends on l,h and yc parameters

that are measured in meters they all have the same physical dimension. Let

us use this circumstance and define the following dimensionless parameters:

p1 :=
h

yc
, p2 :=

l

yc
, where yc 6= 0. (16)

After solving Eq. (15) with substituted Eq. (16), the solution of Eq. (15)

is depicted on Fig. 5.

Fig. 5. Solution of Eq. (15) with labeled contour lines for kτ as a function of (p1, p2).

From Fig. 5 it becomes clear that if there is lack of friction in contact

points the robot should:

• move its center of gravity closer to the rear legs;

• choose contact points higher on the vertical plane for front legs;

• choose contact points closer to vertical plane for rear legs.

5.2. Second Configuration

Leg contact points for the second configuration are:

r1 = (d, l,H), r2 = (−d, l,H)

r3 = (d, 0, h), r4 = (−d, 0, h)
, where l < 0, H > h, yc > l. (17)

Similarly, for the second configuration we get the following system of

three equations:
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
Nu −Ndkτ = 0,

2Nu + 2Ndkτ = P,

2Ndh+ Pyc = 2Nu(l +Hkτ )

(18)

There are two possible solutions for kτ , but only one meets requirement

0 < kτ < 1:

0 < kτ =
(H − h)−

√
(H − h)2 − 4y2c + 4lyc

2yc
< 1 (19)

5.2.1. Dimensionless parameters

Let us find solution of inequality 0 < kτ < 1 using the following dimension-

less parameters:

p1 :=
(H − h)

yc
, p2 :=

l

yc
, where yc 6= 0. (20)

The solution of Eq. (19) is depicted on Fig. 6.

Fig. 6. Solution of Eq. (19). Left - yc < 0, right - yc > 0.

From Fig. 6 it can be shown that for case when yc > 0 to reduce the

value of kτ robot should:

• keep its center of gravity far from front legs;

• keep rear legs as low as possible;

• keep front legs closer to cliff edge.
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From Fig. 6 it can be shown that for case when yc < 0 to reduce the

value of kτ robot should:

• keep its center of gravity closer to front legs;

• keep rear legs as low as possible;

• keep front legs closer to cliff edge.

In Eq. (20) we have considered substitution in assumption that yc 6= 0.

Let us see what happens when center of gravity is right above the cliffs edge

in second configuration.

5.2.2. Second configuration. yc equals to zero

If the yc = 0 the equations of static stability Eq. (18) will transform into

the following system:


Nd −Nukτ = 0

2Nu + 2Ndkτ = P

Ndh−Nul = HNukτ

(21)

There is only one solution for kτ , Nu and Nd for Eq. (21):


kτ = − l

H − h
,

Nu =
P (H − h)2

2((H − h)2 + l2)

Nd =
−Pl(H − h)

2((H − h)2 + l2)

(22)

Due to Eq. (17) the Eq. (22) for kτ is always greater than zero. From the

other side, the requirement kτ < 1 is equivalent to the following inequality:

0 < −l < (H − h), where l < 0 (23)

Equation (23) means that to provide stable configuration in case when

yc = 0 the contact points should be chosen in a way, that the front legs

should be closer to cliff edge than the rear legs.

6. Hexapod simulation for cliff climbing

To verify the static stability conditions the computer simulation of artic-

ulated hexapod was made. The ”Universal Mechanism”5 software package
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was used to provide dynamical model of the articulated hexapod robot and

the cliff obstacle. All robot’s legs have so called viscous elastic point contact

models with the cliff obstacle.

Fig. 7. Climbing motion sequence (left-to-right, top-to-bottom).
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The desired robot motion was manually scripted as list of scheduled

commands for leg’s positions and body configuration along with position

and orientation. Robot’s climbing motion sequence during simulation is

depicted on Fig. 7. The resulting time of climbing maneuver in quasi static

regime of motion takes about 50 seconds to climb up the cliff. The ratio

between real and simulation time is approximately equal to 1 on computer

with Core-i7 CPU and GTX950M GPU.

7. Conclusion

The analysis of robot’s configurations in different poses on the cliff proved

that stable quasi static motion is possible for all steps, i.e. the robot is

capable of climbing the cliff with static stability preservation using only

Coulomb friction forces. Articulated three segment body has shown advan-

tages in comparison with similar rigid body in context of extreme obstacle

overcoming. On the other hand, increased passability requires more com-

plex motion planning and control. Conditions for statics stability for all

main climbing configurations obtained.
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