Respuesta a la Demanda para Smart Home Utilizando Procesos Estocásticos

##plugins.themes.bootstrap3.article.main##

Pablo Moreno
Marcelo García
Enviado: Dec 13, 2016
Publicado: Dec 13, 2016

Resumen

El incremento del consumo de energía en los usuarios finales, en especial en los residenciales, implica que el sistema eléctrico crezca a la par, tanto en infraestructura como en potencia instalada, además los precios de la energía varían para poder satisfacer estas necesidades, por lo que el presente trabajo utiliza la metodología de respuesta a la demanda utilizando métodos estocásticos como Markov para poder optimizar el consumo de energía en los usuarios residenciales. Es necesaria la participación de los clientes en el sistema eléctrico, ya que de esta manera se logra verificar la cantidad de carga real que existe en la red en determinado tiempo, y esto ayuda a los sistemas eléctricos a ser más confiables y eficientes, dando garantías a la hora de dar un suministro energético. Además, al optimizar el consumo energético se logra una menor emisión de CO2 al medio ambiente al depender menos de centrales que utilizan combustibles fósiles, lo cual implica una reducción en la contaminación global, un tema que es de primordial importancia en la actualidad. Aunque existen modelados para la optimización energética, la realidad es que el consumo de una vivienda es mucho más complejo, ya que tiene variables como la ubicación geográfica, la arquitectura, los materiales usados para el diseño, la disposición de las ventanas, el número de ocupantes, el clima, la estación del año. Entonces, al aplicar la respuesta a la demanda en entornos residenciales, es importante tomar en cuenta criterios básicos, como por ejemplo mantener el confort del usuario final ya que de esta manera se logra una participación sostenida de la respuesta de la demanda, al tener participación individual, se requeriría una gran inversión en tecnología de control y comunicación.

Palabras clave

Respuesta a la demanda, Automatización, Energía, Generación, Software, Servicio, Eficiencia, Residencial, Carga, Clientes

Descargas

La descarga de datos todavía no está disponible.

##plugins.themes.bootstrap3.article.details##

Cómo citar
Moreno, P., & García, M. (2016). Respuesta a la Demanda para Smart Home Utilizando Procesos Estocásticos. I+D Tecnológico, 12(2), 7-17. Recuperado a partir de http://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/1231

Citas

(1) S. Li and D. Zhang, “Developing smart and real-time demand response mechanism for residential energy consumers,” in 2014 Clemson University Power Systems Conference, 2014, pp. 1–5.

(2) M. Muratori and G. Rizzoni, “Residential Demand Response: Dynamic Energy Management and Time-Varying Electricity Pricing,” IEEE Trans. Power Syst., vol. PP, no. 99, pp. 1–10, 2015.

(3) N. Neyestani, M. Y. Damavandi, M. Shafie-khah, J. P. S. Catalao, and G. Chicco, “Uncertainty characterization of carrierbased demand response in smart multi-energy systems,” in 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), 2015, pp. 366–371.

(4) Y. Ozturk, P. Jha, S. Kumar, and G. Lee, “A personalized home energy management system for residential demand response,” in 4th International Conference on Power Engineering, Energy and Electrical Drives, 2013, pp. 1241–1246.

(5) W. Shi, N. Li, X. Xie, C.-C. Chu, and R. Gadh, “Optimal Residential Demand Response in Distribution Networks,” IEEE J. Sel. Areas Commun., vol. 32, no. 7, pp. 1441–1450, Jul. 2014.

(6) D. Han and J. Lim, “Smart home energy management system using IEEE 802.15.4 and zigbee,” IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1403–1410, Aug. 2010.

(7) S. Ghaemi and S. Schneider, “Potential analysis of residential Demand Response using GridLAB-D,” in IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, 2013, pp. 8039–8045.

(8) V. Zois, M. Frincu, and V. Prasanna, “Integrated platform for automated sustainable demand response in smart grids,” in 2014 IEEE International Workshop on Intelligent Energy Systems (IWIES), 2014, pp. 64–69.

(9) S. H. Hong, Y.-C. Li, J. H. Park, and B. Zhao, “Experimental implementation of demand response service for residential buildings,” in 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2014, pp. 277–282.

(10) P. M. Purohit and H. S. Pandya, “Demand Response Program for consumer interactive distribution system,” in 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), 2015, pp. 1–5.

(11) Li Zhang, Jianguo Zhao, Xueshan Han, and Lin Niu, “Dayahead Generation Scheduling with Demand Response,” in 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, 2005, pp. 1–4.

(12) P. B. Luh, L. D. Michel, and P. Friedland, “Load forecasting and demand response,” in IEEE PES General Meeting, 2010, pp. 1– 3.

(13) S. Annala, S. Viljainen, and J. Tuunanen, “Demand response from residential customers’ perspective,” in 2012 9th International Conference on the European Energy Market, 2012, pp. 1–7.

(14) W. Jewell, “The Effects of Residential Energy Efficiency on Electric Demand Response Programs,” in 2014 47th Hawaii International Conference on System Sciences, 2014, pp. 2363–2372.

(15) N. Baghina, I. Lampropoulos, B. Asare-Bediako, W. L. Kling, and P. F. Ribeiro, “Predictive control of a domestic freezer for realtime demand response applications,” in 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 2012, pp. 1–8.

(16) M. Kim, J. Choi, and J. Yoon, “Development of the Big Data Management System on National Virtual Power Plant,” in 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015, pp. 100–107.

(17) Z. Wang and R. Paranjape, “Agent-based simulation of home energy management system in residential demand response,” in 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), 2014, pp. 1–6.