Optimización de una red para una casa inteligente basada en IEEE 802.15.4g para una infraestructura de medición avanzada

Maricela Alexandra Arciniega Calderón, Nelson Andrés Ayala Arciniegas, Esteban Mauricio Inga Ortega

Resumen


En el presente artículo se expone la optimización de la infraestructura y elementos que intervienen en la comunicación y transmisión de información. En el modelo se minimizará el número de Puntos de Acceso Inalámbrico (WAP), teniendo en cuenta restricciones de capacidad, cobertura e interferencia con tecnología LTE en un sistema WLAN para una red de sensores IEEE 802.15.4g bajo el concepto de Smart Home mediante la utilización de softwares Matlab y LPSolver, se presenta una formulación matemática, la cual se utilizará para la ubicación de un conjunto de Puntos de Acceso Inalámbrico que otorgan cobertura a los Dispositivos Inteligentes la utilización del software LPSolver facilitará la resolución de ecuaciones llegando a proporcionar una reducción de tiempos y recursos para el estudio de diseño en Smart Metering, mediante la ejemplificación de problemas reales que son de gran relevancia para condiciones de diseño de redes inalámbricas, aplicando una topología jerárquica.

Palabras clave


Capacidad, casa inteligente, cobertura, infraestructura de medición avanzada, interferencia, optimización, redes eléctricas inteligentes

Texto completo:

PDF HTML

Referencias


(1) H. Wang, Y. Qian, and H. Sharif, “Multimedia communications over cognitive radio networks for smart grid applications,” IEEE Wirel. Commun., vol. 20, no. August, pp. 125–132, 2013.

(2) E. Inga and J. Rodriguez, “Estrategias de Negocio Para Medición Inteligente Acoplando Energías Renovables,” Prim. Congr. Int. y Expo Científica, vol. 1, pp. 281–291, 2013.

(3) A. Boustani, M. Jadliwala, H. M. Kwon, and N. Alamatsaz, “Optimal Resource Allocation in Cognitive Smart Grid Networks,” pp. 499–506, 2015.

(4) M. Collotta and G. Pau, “A Novel Energy Management Approach for Smart Homes using Bluetooth Low Energy,” IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 1–1, 2015.

(5) S. E. Nezhad, H. J. Kamali, and M. E. Moghaddam, “Solving KCoverage Problem in Wireless Sensor Networks Using Improved Harmony Search,” 2010 Int. Conf. Broadband, Wirel. Comput. Commun. Appl., pp. 49–55, 2010.

(6) D.-M. Han and J.-H. Lim, “Smart home energy management system using IEEE 802.15.4 and ZigBee,” IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1403–1410, 2010.

(7) M. Erol-Kantarci and H. T. Mouftah, “Wireless Sensor Networks for Cost-Efficient Residential Energy Management in the Smart Grid,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 314 –325, 2011.

(8) R. Amin and J. Martin, “Smart Grid Communication using Next Generation Heterogeneous Wireless Networks,” Smart Grid Commun. (SmartGridComm), 2012 IEEE Third Int. Conf., pp. 229– 234, 2012.

(9) C. S. Sum, F. Kojima, and H. Harada, “Coexistence of homogeneous and heterogeneous systems for IEEE 802.15.4g smart utility networks,” 2011 IEEE Int. Symp. Dyn. Spectr. Access Networks, DySPAN 2011, no. d, pp. 510–520, 2011.

(10) R. Missaoui, H. Joumaa, S. Ploix, and S. Bacha, “Managing energy Smart Homes according to energy prices: Analysis of a Building Energy Management System,” Energy Build., vol. 71, pp. 155–167, 2014. [11] Y. Liu, “Wireless Sensor Network Applications in Smart Grid : Recent Trends and Challenges,” vol. 2012, pp. 2–7, 2012. [12] D. F. R. Hincapié and S. Céspedes, “Evaluation of mesh-under and route-over routing strategies in AMI systems,” Commun. Conf. (COLCOM), 2012 IEEE Colomb., pp. 1–6, 2012.

(13) O. Asad, M. Erol-Kantarci, and H. Mouftah, “Sensor network web services for Demand-Side Energy Management applications in the smart grid,” Consum. Commun. Netw. Conf. (CCNC), 2011 IEEE, pp. 1176–1180, 2011.

(14) F. Viani, F. Robol, A. Polo, P. Rocca, G. Oliveri, and A. Massa, “Wireless architectures for heterogeneous sensing in smart home applications: Concepts and real implementation,” Proc. IEEE, vol. 101, no. 11, pp. 2381–2396, 2013.

(15) R. Hincapié, “Optimal Planning for Cellular Networks for Smart Metering Infrastructure in Rural and Remote Areas * Óptima Planeación de Redes Celulares para la Infraestructura de Medición Inteligente en Zonas Rurales y Remotas,” vol. 11, no. 2, pp. 49–58, 2015.

(16) G. Koutitas and L. Tassiulas, “A delay based optimization scheme for peak load reduction in the smart grid,” Proc. 3rd Int. Conf. Futur. Energy Syst. Where Energy, Comput. Commun. Meet - e-Energy ’12, pp. 1–4, 2012.

(17) I. Workshop and S. Processing, “A LARGE SCALE AND LOW COST SOLUTION FOR REAL-TIME INDOOR Universit ´ e de technologie de Troyes Institut Charles Delaunay ICD , UMR STMR 6279 BP 2060 - 10010 TROYES Cedex email : abdelkader.miraoui@utt.fr,” no. 2, pp. 392–395, 2011.

(18) A. R. Devidas, T. S. Subeesh, and M. V. Ramesh, “Design and implementation of user interactive wireless smart home energy management system,” 2013 Int. Conf. Adv. Comput. Commun. Informatics, pp. 626–631, 2013.

(19) S. K. Das, D. J. Cook, A. Bhattacharya, E. O. Heierman, and T. Y. Lin, “The role of prediction algorithms in the MavHome smart home architecture,” IEEE Wirel. Commun., vol. 9, no. 6, pp. 77–84, 2002. [20] E. Inga, G. Arevalo, and R. Hincapié, “Optimal deployment of cellular networks for Advanced Measurement Infrastructure in Smart Grid,” Commun. Comput. (COLCOM), 2014 IEEE Colomb. Conf., pp. 1–6, 2014.






Copyright (c) 2016 I+D Tecnológico



Indexado y Catalogado en:

DRJI Indexed Journal





© 2016 Portal de Revistas de la Universidad Tecnológica de Panamá
Este sitio es un componente del proyecto UTP-Ridda2
Utilizando Open Journal Systems