Microestructura y nanoindentación de la zona de la soldadura de un acero microaleado experimental
##plugins.themes.bootstrap3.article.main##
Enviado:
Sep 9, 2016
Resumen
Se analizó el efecto de los ciclos térmicos de soldadura en la microestructura de un acero microaleado experimental martensítico-bainítico. En la zona de fusión se presenta una microestructura de bainita y ferrita acicular. En la zona afectada por el calor se presenta una microestructura de: a) bainita en la subzona de crecimiento de grano; b) ferrita poligonal en la subzona de recristalización; c) ferrita cuasi-poligonal y martensita revenida en la subzona intercrítica; d) martensita revenida en la subzona subcrítica. Mediante pruebas de microdureza se observó que se presenta un ablandamiento en las subzonas de recristalización, intercrítica y subcrítica, el cual está relacionado con la microestructura presente. Adicionalmente, con pruebas de nanoindentación, se observó un endurecimiento en la frontera que separa a la subzona intercrítica de la subcrítica, que puede ser atribuido a un fenómeno de endurecimiento secundario por precipitación de carburos de los elementos aleantes. Finalmente, se observó que la ferrita poligonal presenta un comportamiento y nanodureza similar a la bainita debido al efecto del borde de grano.
Palabras clave
Acero microaleado, Martensita revenida, Nanodureza, Nanoindentación, Zona afectada por el calorDescargas
La descarga de datos todavía no está disponible.
##plugins.themes.bootstrap3.article.details##
Cómo citar
López Martínez, E., Serna, S., Flores, O., & Campillo, B. (1). Microestructura y nanoindentación de la zona de la soldadura de un acero microaleado experimental. I+D Tecnológico, 12(1), 40-45. Recuperado a partir de https://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/593
Citas
(1) P. Ghosh, P. Gupta, Ramavtar, & B. Jha. “Weldability of Intercritical Annealed Dual-Phase Steel with the Resistance Spot Welding Process.” Welding Journal, pp. 7-14, 1991.
(2) A. Takahashi & H. Ogawa. “Influence of Softened Heat-affected Zone on Stress Oriented Hydrogen Induced Cracking of a High Strength Line Pipe Steel.” ISIJ International, vol. 35, no. 10, pp. 1190-1195, 1995.
(3) M. Xia, E. Biro, Z. Tian, & Y. Zhou. “Effects of Heat Input and Martensite on HAZ Softening in Laser Welding of Dual Phase Steels.” ISIJ International, vol. 48, no. 6, pp. 809-814, 2008.
(4) P. Ghosh, P. Gupta, O. Pal, R. Avtar, B. Jha & V. Dwivedi. “Influence of Weld Thermal Cycle on Properties of Flash Butt Welded Mn-Cr-Mo Dual Phase Steel”. ISIJ International, vol. 33, no. 7, pp. 807-815, 1993.
(5) V. Baltazar Hernandez, S. Panda, Y. Okita, & N. Zhou. “A study on heat affected zone softening in resistance spot welded dual phase steel by nanoindentation.” Journal of Materials Science, vol. 45, no. 6, pp. 1638-1647, 2010.
(6) H. Pisarski & R. Dolby, “The significance of softened HAZs in high strength structural steels.” Welding in the World, vol. 47, no. 5/6, pp. 32-40, 2003.
(7) F. Hochhauser, W. Ernst, R. Rauch, R. Vallant & N. Enzinger. “Influence of the Soft Zone on The Strength of Welded Modern HSLA Steels.” Welding in the World, vol. 56, no. 5-6, pp. 77-85, 2012.
(8) J. Li, S. Nayak, E. Biro, S. Panda, F. Goodwin & Y. Zhou. “Effects of weld line position and geometry on the formability of laser welded high strength low alloy and dual-phase steel blanks.” Materials & Design, vol. 52, pp. 757-766, 2013.
(9) E. Biro, J. McDermid, J. Embury & Y. Zhou. “Softening Kinetics in the Subcritical Heat-Affected Zone of Dual-Phase Steel Welds.” Metall and Mat Trans A, vol. 41, no. 9, pp. 2348- 2356, 2010.
(10) W. Oliver, & G. Pharr. “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.” Journal of Materials Research, vol. 7, no. 6, pp. 1564-1583, 1996.
(11) T. Ohmura, K. Tsuzaki & S. Matsuoka. “Nanohardness measurement of high-purity Fe–C martensite.” Scripta Materialia, vol. 45, no. 8, pp. 889-894, 2001.
(12) D. Saha, D. Westerbaan, V. Nayak, E. Biro, A. Gerlich & Y. Zhou. “Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels.” Materials Science and Engineering: A, vol. 607, pp. 445-453, 2014.
(13) V. Baltazar Hernández, S. Panda, M. Kuntz & Y. Zhou. “Nanoindentation and microstructure analysis of resistance spot welded dual phase steel.” Materials Letters, vol. 64, no. 2, pp. 207-210, 2010.
(14) D. Lee, J. Lee, M. Seok, U. Baek, S. Nahm & J. Jang. “Stress- dependent hardening-to-softening transition of hydrogen effects in nanoindentation of a linepipe steel.” International Journal of Hydrogen Energy, vol. 39, no. 4, pp. 1897-1902, 2014.
(15) Q. Furnémont, M. Kempf, P. Jacques, M. Göken & F. Delannay. “On the measurement of the nanohardness of the constitutive phases of TRIP-assisted multiphase steels.” Materials Science and Engineering: A, vol. 308, no. 1-2, pp. 26-32, 2002.
(16) B. Choi, D. Seo & J. Jang. “A nanoindentation study on the micromechanical characteristics ofAPI X100 pipeline steel.” Metals and Materials International, vol. 15, no. 3, pp. 373-378, 2009.
(17) B. He, & M. Huang. “Revealing the Intrinsic Nanohardness of Lath Martensite in Low Carbon Steel.” Metall and Mat Trans A, vol. 46, no. 2, pp. 688-694, 2015.
(18) J. Stewart, J. Williams, J. & N. Chawla, “Influence of Thermal Aging on the Microstructure and Mechanical Behavior of Dual- Phase, Precipitation-Hardened, Powder Metallurgy Stainless Steels.” Metall and Mat Trans A, vol. 43, no. 1, pp. 124-135, 2011.
(19) J. Li, T. Ohmura & K. Tsuzaki. “Evaluation of Grain Boundary Effect on Strength of Fe-C Low Alloy Martensitic Steels by Nanoindentation Technique.” Materials Transactions, vol. 46, no. 6, pp. 1301-1305, 2005.
(20) D. Porter, K. Easterling. Phase Transformation in Metals and Alloys. London: Chapman & Hall, 1992.
(21) P. Morra, A. Böttger & E. Mittemeijer. “Decomposition of iron- based martensite. A kinetic analysis by means of differential scanning calorimetry and dilatometry.” Journal of Thermal Analysis, vol. 64, no. 3, pp. 905 – 914, 2001.
(22) K. Poorhaydari, B. Patchett & D. Ivey. “Estimation of cooling rate in the welding of plates with intermediate thickness.” Welding Journal, pp. 149-155, 2005.
(23) E. Biro, J. McDermid, S. Vignier & Y. Norman Zhou. “Decoupling of the softening processes during rapid tempering of a martensitic steel.” Materials Science and Engineering: A, vol. 615, pp. 395-404, 2014.
(2) A. Takahashi & H. Ogawa. “Influence of Softened Heat-affected Zone on Stress Oriented Hydrogen Induced Cracking of a High Strength Line Pipe Steel.” ISIJ International, vol. 35, no. 10, pp. 1190-1195, 1995.
(3) M. Xia, E. Biro, Z. Tian, & Y. Zhou. “Effects of Heat Input and Martensite on HAZ Softening in Laser Welding of Dual Phase Steels.” ISIJ International, vol. 48, no. 6, pp. 809-814, 2008.
(4) P. Ghosh, P. Gupta, O. Pal, R. Avtar, B. Jha & V. Dwivedi. “Influence of Weld Thermal Cycle on Properties of Flash Butt Welded Mn-Cr-Mo Dual Phase Steel”. ISIJ International, vol. 33, no. 7, pp. 807-815, 1993.
(5) V. Baltazar Hernandez, S. Panda, Y. Okita, & N. Zhou. “A study on heat affected zone softening in resistance spot welded dual phase steel by nanoindentation.” Journal of Materials Science, vol. 45, no. 6, pp. 1638-1647, 2010.
(6) H. Pisarski & R. Dolby, “The significance of softened HAZs in high strength structural steels.” Welding in the World, vol. 47, no. 5/6, pp. 32-40, 2003.
(7) F. Hochhauser, W. Ernst, R. Rauch, R. Vallant & N. Enzinger. “Influence of the Soft Zone on The Strength of Welded Modern HSLA Steels.” Welding in the World, vol. 56, no. 5-6, pp. 77-85, 2012.
(8) J. Li, S. Nayak, E. Biro, S. Panda, F. Goodwin & Y. Zhou. “Effects of weld line position and geometry on the formability of laser welded high strength low alloy and dual-phase steel blanks.” Materials & Design, vol. 52, pp. 757-766, 2013.
(9) E. Biro, J. McDermid, J. Embury & Y. Zhou. “Softening Kinetics in the Subcritical Heat-Affected Zone of Dual-Phase Steel Welds.” Metall and Mat Trans A, vol. 41, no. 9, pp. 2348- 2356, 2010.
(10) W. Oliver, & G. Pharr. “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.” Journal of Materials Research, vol. 7, no. 6, pp. 1564-1583, 1996.
(11) T. Ohmura, K. Tsuzaki & S. Matsuoka. “Nanohardness measurement of high-purity Fe–C martensite.” Scripta Materialia, vol. 45, no. 8, pp. 889-894, 2001.
(12) D. Saha, D. Westerbaan, V. Nayak, E. Biro, A. Gerlich & Y. Zhou. “Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels.” Materials Science and Engineering: A, vol. 607, pp. 445-453, 2014.
(13) V. Baltazar Hernández, S. Panda, M. Kuntz & Y. Zhou. “Nanoindentation and microstructure analysis of resistance spot welded dual phase steel.” Materials Letters, vol. 64, no. 2, pp. 207-210, 2010.
(14) D. Lee, J. Lee, M. Seok, U. Baek, S. Nahm & J. Jang. “Stress- dependent hardening-to-softening transition of hydrogen effects in nanoindentation of a linepipe steel.” International Journal of Hydrogen Energy, vol. 39, no. 4, pp. 1897-1902, 2014.
(15) Q. Furnémont, M. Kempf, P. Jacques, M. Göken & F. Delannay. “On the measurement of the nanohardness of the constitutive phases of TRIP-assisted multiphase steels.” Materials Science and Engineering: A, vol. 308, no. 1-2, pp. 26-32, 2002.
(16) B. Choi, D. Seo & J. Jang. “A nanoindentation study on the micromechanical characteristics ofAPI X100 pipeline steel.” Metals and Materials International, vol. 15, no. 3, pp. 373-378, 2009.
(17) B. He, & M. Huang. “Revealing the Intrinsic Nanohardness of Lath Martensite in Low Carbon Steel.” Metall and Mat Trans A, vol. 46, no. 2, pp. 688-694, 2015.
(18) J. Stewart, J. Williams, J. & N. Chawla, “Influence of Thermal Aging on the Microstructure and Mechanical Behavior of Dual- Phase, Precipitation-Hardened, Powder Metallurgy Stainless Steels.” Metall and Mat Trans A, vol. 43, no. 1, pp. 124-135, 2011.
(19) J. Li, T. Ohmura & K. Tsuzaki. “Evaluation of Grain Boundary Effect on Strength of Fe-C Low Alloy Martensitic Steels by Nanoindentation Technique.” Materials Transactions, vol. 46, no. 6, pp. 1301-1305, 2005.
(20) D. Porter, K. Easterling. Phase Transformation in Metals and Alloys. London: Chapman & Hall, 1992.
(21) P. Morra, A. Böttger & E. Mittemeijer. “Decomposition of iron- based martensite. A kinetic analysis by means of differential scanning calorimetry and dilatometry.” Journal of Thermal Analysis, vol. 64, no. 3, pp. 905 – 914, 2001.
(22) K. Poorhaydari, B. Patchett & D. Ivey. “Estimation of cooling rate in the welding of plates with intermediate thickness.” Welding Journal, pp. 149-155, 2005.
(23) E. Biro, J. McDermid, S. Vignier & Y. Norman Zhou. “Decoupling of the softening processes during rapid tempering of a martensitic steel.” Materials Science and Engineering: A, vol. 615, pp. 395-404, 2014.