Clase de red de Petri para usos de recursos binarios ordenados

##plugins.themes.bootstrap3.article.main##

Carlos Rovetto
Tomás Concepción
Elia Cano
Enviado: Dec 14, 2016
Publicado: Dec 13, 2016

Resumen

La prevención/evitación de los bloqueos mutuos es un dominio de investigación activo que exige aplicar diversas políticas de control para hacer frente a este problema. En este artículo presentamos una nueva subclase de Red de Petri especializada llamada Clase de red de Petri para usos de recursos binarios ordenados (BORPN) y sus principales propiedades estructurales. En esencia esta nueva clase está construida a partir de diversas máquinas de estados que comparten recursos unitarios en forma compleja, lo que permite el modelado de bifurcaciones y procesos de unión. La estructura reducida de esta nueva clase de red de Petri así como su marcado de los recursos proporciona ventajas que permiten el análisis de todo el comportamiento del sistema, siendo una tarea prohibitiva para grandes sistemas como los algoritmos de encaminamiento.

Palabras clave

Bloqueo mutuo, clase BORPN, redes de Petri, sifones, Sistemas de Asignación de Recursos.

Descargas

La descarga de datos todavía no está disponible.

##plugins.themes.bootstrap3.article.details##

Cómo citar
Rovetto, C., Concepción, T., & Cano, E. (2016). Clase de red de Petri para usos de recursos binarios ordenados. I+D Tecnológico, 12(2), 89-97. Recuperado a partir de https://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/1239

Citas

(1) F. Tricas, “Analysis, prevention and avoidance of deadlocks in sequential resource allocation systems,” Ph.D. dissertation, Zaragoza. España. Departamento de Ingeniería Eléctrica e Informática, Universidad de Zaragoza. Mayo, 2003.

(2) F. Tricas and J. Ezpeleta, “Computing minimal siphons in petri net models of resource allocation systems: a parallel solution,” Systems, Man and Cybernetics, Part A, IEEE Transactions on, vol. 36, no. 3, pp. 532–539, May 2006.

(3) Y.-S. Huang, “Deadlock prevention for sequence resource allocation systems,” J. Inf. Sci. Eng., vol. 23, no. 1, pp. 215–231, 2007.

(4) E. Pastor, J. Cortadella, and O. Roig, “Symbolic analysis of bounded petri nets,” Computers, IEEE Transactions on, vol. 50, no. 5, pp. 432–448, May 2001.

(5) K. Klai, S. Tata, and J. Desel, “Symbolic abstraction and deadlock-freeness verification of inter-enterprise processes,” in Proceedings of the 7th International Conference on Business Process Management, ser. BPM ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 294–309.

(6) G. Ciardo, “Data representation and efficient solution: a decision diagram approach,” in Proceedings of the 7th International Conference on Formal Methods for Performance Evaluation, ser. SFM’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 371–394. [Online]. Available: http://portal.acm.org/citation.cfm?id=1768017.1768026

(7) F. Vallés, F. Tricas, J. Ezpeleta, and J. Colom, “Structurally safe net systems,” R. Boel and G. Stremersch, Eds., Kluwer Academic Press. Kluwer Academic Press, 8 2000, pp. 441–448.

(8) E. Cano, A. Rovetto, and J. Colom, “On the computation of the minimal siphons of S4PR nets from a generating family of siphons,” 15th. IEEE Int. Conf. on Emerging Technologies and Factory Automation, September 2010.

(9) E. E. Cano, C. A. Rovetto, and J. M. Colom, “An algorithm to compute the minimal siphons in S4PR nets,” Discrete Event Dynamic Systems, vol. 22, no. 4, pp. 403–428, 2012.

(10) T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-ings of the IEEE, vol. 77, no. 4, pp. 541–580, April 1989.

(11) E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,” ACM Computing Surveys (CSUR), vol. 3, pp. 67–78, June 1971. [Online]. Available: http://doi.acm.org/10.1145/356586.356588

(12) C. A. Rovetto, E. E. Cano, and J. Colom, “Deadlock analysis in minimal adaptive routing algorithms using petri nets,” Systems, Man, and Cybernetics, 2010 IEEE International Conference on, 10 2010.