Carbon Dioxide Soil Respiration in a Tropical Rainforest – Gamboa, Panama
Main Article Content
Sent:
Nov 21, 2017
Published: Nov 21, 2017
Published: Nov 21, 2017
Abstract
Carbon storage in the soil occurs through the formation and decomposition of organic matter. The constant supply of nutrients to the soil by the accumulation of elements such as leaves, twigs, fruit, bark and trees, which on decomposition produces a number of elements that help the growth of trees and other plants and production of CO2 in the soil.
The current study search for quantify CO2 soil flux in a 1 ha plot locate at Cerro Pelado Gamboa in the Panama Canal watershed. Close chambers system Li-COR 6400 XT-09 equipment was used to estimate in a short time the concentration rate of CO2 through soil surface.
21 sampling points were defined into the plot where CO2 flux, soil temperature, soil moisture; light intensity and slop measurements were carried out. Results show that the CO2 soil rate flux was 49.33 t CO2 ha-1 yr-1 and temperature and soil moisture exert significant control over emission rates of this gas into the atmosphere.
The current study search for quantify CO2 soil flux in a 1 ha plot locate at Cerro Pelado Gamboa in the Panama Canal watershed. Close chambers system Li-COR 6400 XT-09 equipment was used to estimate in a short time the concentration rate of CO2 through soil surface.
21 sampling points were defined into the plot where CO2 flux, soil temperature, soil moisture; light intensity and slop measurements were carried out. Results show that the CO2 soil rate flux was 49.33 t CO2 ha-1 yr-1 and temperature and soil moisture exert significant control over emission rates of this gas into the atmosphere.
Keywords
Infrared gas analyzer (IRGA), tropical forests, Climate change, carbon dioxide, Greenhouse gas emissions, Cellular respiration, reservoirDownloads
Download data is not yet available.
Article Details
How to Cite
Serrano, E., Nuñez, M., & Valleter, E. (2017). Carbon Dioxide Soil Respiration in a Tropical Rainforest – Gamboa, Panama. I+D Tecnológico, 13(2), 49-54. Retrieved from https://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/1714
References
(1) MALHI, Yadvinder; GRACE, John. Tropical forests and atmospheric carbon dioxide. Trends in Ecology & Evolution, 2000, vol. 15, no 8, p. 332-337.
(2) ROBERT, Michel. Captura de carbono en los suelos para un mejor manejo de la tierra. Food & Agriculture Org., 2002.
(3) SINGH, J. S.; GUPTA, S. R. Plant decomposition and soil respiration in terrestrial ecosystems. The botanical review, 1977, vol. 43, no 4, p. 449-528.
(4) Orjuela, H. B. (1989). El suelo: una visión sobre sus componentes biorgánicos. Universidad de Nariño.
(5) Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., & Riahi,. IPCC, 2007: climate change 2007: synthesis report. IPCC, 2008.
(6) Pinzón, R., Fábrega, J., Vega, D., Vallester, E. N., Aizprúa, R., López-Serrano, F. R., ... & Espino, K. (2012). Estimates of biomass and fixed carbon at a rainforest in Panama. Air, Soil and Water Research, 5, 79.
(7) Licor.com. (2017). LI-6400XT Chambers & Accessories | LI- COR Environmental. [online] Available at:https://www.licor.com/env/products/photosynthesis/LI- 6400XT/chambers/soil_chamber.html [Accessed 28 Feb. 2017].
(8) Domínguez Soto, J. M., Gutiérrez, R., Delia, A., Prieto García, F., & Acevedo Sandoval, O. (2012). Sistema de notación Munsell y CIELab como herramienta para evaluación de color en suelos. Revista mexicana de ciencias agrícolas, 3(1), 141- 155.
(9) Velázquez-García, J. D. J., Oleschko, K., Muñoz-Villalobos, J. A., Velásquez-Valle, M. A., Girón-Ríos, Y., Martínez- Menes, M., & Figueroa-Sandoval, B. (2007). El color del Andosol como un indicador de su calidad física bajo el manejo. Terra Latinoamericana, 25(1), 1-8.
(10) Davidson, E., Belk, E., & Boone, R. D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global change biology, 1998, vol. 4, no 2, p. 217-227.
(11) Schwendenmann, L., Veldkamp, E., Brenes, T., O'brien, J. J., & Mackensen, J. Spatial and temporal variation in soil CO 2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry, 2003, vol. 64, no 1, p. 111-128.
(12) FANG, C.; MONCRIEFF, J. B. The dependence of soil CO 2 efflux on temperature. Soil Biology and Biochemistry, 2001, vol. 33, no 2, p. 155-165.
(13) Boone, R. D., Nadelhoffer, K. J., Canary, J. D., & Kaye, J. PRoots exert a strong influence on the temperature sensitivityof soil respiration. Nature, 1998, vol. 396, no 6711, p. 570-572.
(14) RAICH, J. W.; SCHLESINGER, Wo H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 1992, vol. 44, no 2, p. 81-99.
(15) PALACIO, Álvaro Andrés Ramírez; HURTADO, Flavio Humberto Moreno. Respiración microbial y de raíces en suelos de bosques tropicales primarios y secundarios (Porce, Colombia). Revista Facultad Nacional de Agronomía Medellín, 2008, vol. 61, no 1, p. 4381.
(16) Meir, P., Grace, J., Miranda, A., & Lloyd, J. Soil respiration in a rainforest in Amazonia and in cerrado in central Brazil. Amazonian deforestation and climate, 1996, vol. 1, p. 319-330.
(17) Yan, J., Wang, Y., Zhou, G., & Zhang, D. Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Change Biology, 2006, vol. 12, no 5, p. 810-821.
(18) RAICH, James W. Aboveground productivity and soil respiration in three Hawaiian rain forests. Forest Ecology and Management, 1998, vol. 107, no 1, p. 309-318.
(19) MORENO-HURTADO, Flavio H. Soil carbon dynamics in primary and secondary tropical forests in Colombia. 2004.
(20) HOUGHTON, John T. Climate change 1995: The science of climate change: contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1996.
(2) ROBERT, Michel. Captura de carbono en los suelos para un mejor manejo de la tierra. Food & Agriculture Org., 2002.
(3) SINGH, J. S.; GUPTA, S. R. Plant decomposition and soil respiration in terrestrial ecosystems. The botanical review, 1977, vol. 43, no 4, p. 449-528.
(4) Orjuela, H. B. (1989). El suelo: una visión sobre sus componentes biorgánicos. Universidad de Nariño.
(5) Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., & Riahi,. IPCC, 2007: climate change 2007: synthesis report. IPCC, 2008.
(6) Pinzón, R., Fábrega, J., Vega, D., Vallester, E. N., Aizprúa, R., López-Serrano, F. R., ... & Espino, K. (2012). Estimates of biomass and fixed carbon at a rainforest in Panama. Air, Soil and Water Research, 5, 79.
(7) Licor.com. (2017). LI-6400XT Chambers & Accessories | LI- COR Environmental. [online] Available at:https://www.licor.com/env/products/photosynthesis/LI- 6400XT/chambers/soil_chamber.html [Accessed 28 Feb. 2017].
(8) Domínguez Soto, J. M., Gutiérrez, R., Delia, A., Prieto García, F., & Acevedo Sandoval, O. (2012). Sistema de notación Munsell y CIELab como herramienta para evaluación de color en suelos. Revista mexicana de ciencias agrícolas, 3(1), 141- 155.
(9) Velázquez-García, J. D. J., Oleschko, K., Muñoz-Villalobos, J. A., Velásquez-Valle, M. A., Girón-Ríos, Y., Martínez- Menes, M., & Figueroa-Sandoval, B. (2007). El color del Andosol como un indicador de su calidad física bajo el manejo. Terra Latinoamericana, 25(1), 1-8.
(10) Davidson, E., Belk, E., & Boone, R. D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global change biology, 1998, vol. 4, no 2, p. 217-227.
(11) Schwendenmann, L., Veldkamp, E., Brenes, T., O'brien, J. J., & Mackensen, J. Spatial and temporal variation in soil CO 2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry, 2003, vol. 64, no 1, p. 111-128.
(12) FANG, C.; MONCRIEFF, J. B. The dependence of soil CO 2 efflux on temperature. Soil Biology and Biochemistry, 2001, vol. 33, no 2, p. 155-165.
(13) Boone, R. D., Nadelhoffer, K. J., Canary, J. D., & Kaye, J. PRoots exert a strong influence on the temperature sensitivityof soil respiration. Nature, 1998, vol. 396, no 6711, p. 570-572.
(14) RAICH, J. W.; SCHLESINGER, Wo H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 1992, vol. 44, no 2, p. 81-99.
(15) PALACIO, Álvaro Andrés Ramírez; HURTADO, Flavio Humberto Moreno. Respiración microbial y de raíces en suelos de bosques tropicales primarios y secundarios (Porce, Colombia). Revista Facultad Nacional de Agronomía Medellín, 2008, vol. 61, no 1, p. 4381.
(16) Meir, P., Grace, J., Miranda, A., & Lloyd, J. Soil respiration in a rainforest in Amazonia and in cerrado in central Brazil. Amazonian deforestation and climate, 1996, vol. 1, p. 319-330.
(17) Yan, J., Wang, Y., Zhou, G., & Zhang, D. Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Change Biology, 2006, vol. 12, no 5, p. 810-821.
(18) RAICH, James W. Aboveground productivity and soil respiration in three Hawaiian rain forests. Forest Ecology and Management, 1998, vol. 107, no 1, p. 309-318.
(19) MORENO-HURTADO, Flavio H. Soil carbon dynamics in primary and secondary tropical forests in Colombia. 2004.
(20) HOUGHTON, John T. Climate change 1995: The science of climate change: contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1996.

