Modelo de Elementos Finitos No-Hidrostático Integrado en la Vertical para la Propagación de Olas

##plugins.themes.bootstrap3.article.main##

Lucas E Calvo Gobbetti
Paulo C Colonna Rosman
Enviado: Nov 21, 2017
Publicado: Nov 21, 2017

Resumen

Un modelo de elementos finitos no hidrostático integrado en la profundidad para la propagación y transformación del oleaje en zonas costeras fue desarrollado con suceso a partir del modelo hidrostático SisBahia®. El modelo utiliza elementos finitos cuadrilaterales cuadráticos para la aproximación de las velocidades horizontales y elementos finitos cuadrilaterales lineales para la aproximación de las elevaciones de la superficie del agua y las presiones no hidrostáticas. El modelo es verificado con una solución analítica y validado usando datos experimentales. Al no requerir del uso de mallas intercaladas el presente modelo puede ser usado en mallas no estructuradas de elementos finitos.

Palabras clave

Propagación de olas, no hidrostático, método de elementos finitos, SisBahia

Descargas

La descarga de datos todavía no está disponible.

##plugins.themes.bootstrap3.article.details##

Cómo citar
Calvo Gobbetti, L., & Colonna Rosman, P. (2017). Modelo de Elementos Finitos No-Hidrostático Integrado en la Vertical para la Propagación de Olas. I+D Tecnológico, 13(2), 55-65. Recuperado a partir de https://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/1715

Citas

(1) Casulli V., Stelling G. S. “Numerical simulation of 3D quasi- hydrostatic, free-surface flows”. Journal of Hydraulic Engineering, Vol. 124, No. 7, pp. 678–686, 1998.

(2) Stansby P. K., Zhou J. G. “Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems”. International Journal for Numerical Methods in Fluids, Vol. 28, No. 3, pp. 541–563, 1998.

(3) Stelling G., Zijlema M. “An accurate and efficient finite difference algorithm for non-hydrostatic free surface flow with application to wave propagation”. International Journal for Numerical Methods in Fluids, Vol. 43, No. 1, pp. 1–23, 2003.

(4) Casulli V. A. “Semi-implicit finite difference method for non- hydrostatic free surface flows”. International Journal for Numerical Methods in Fluids, Vol. 30, No. 4, pp. 425–440, 1999.

(5) Yamazaki Y., Kowalik Z., Cheung K. F. “Depth-integrated, non-hydrostatic model for wave breaking and run-up”. International Journal for Numerical Methods in Fluids, Vol. 61, No. 5, pp. 473–497, 2008.

(6) Walters R. A. “A semi implicit finite element model for non- hydrostatic (dispersive) surface waves”. International Journal for Numerical Methods in Fluids, Vol. 49, No. 7, pp.721–737, 2005.

(7) Wei Z., Jia Y. “A depth-integrated non-hydrostatic finite element model for wave propagation”. International Journal for Numerical Methods in Fluids, Vol. 73, July, 2013.

(8) Rosman P. C. Referência Técnica do SisBahia©.(href="http://www.sisbahia.coppe.ufrj.br/SisBAHIA_RefTec_V95.p df), 2015.

(9) Brooks A., Hughes T. “Stream-line upwind/Petrov Galerkin formulation for Convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation”. Comp. Meth. Appl. Mech. Eng., 32:199–259, 1982.

(10) Zijlema M., Stelling G. S. “Further experiences with computing non-hydrostatic free-surface flows involving water waves.” International Journal for Numerical Methods in Fluids, Vol. 48, No. 2, pp.169–197, 2005.

(11) Beji S., Battjes J. A. “Experimental investigation of wave propagation over a bar”. Coastal Engineering, Vol. 19, No. 1, pp. 151–162, 1993.

(12) Luth H. R., Klopman G., Kitou N. “Project 13G: kinematics of waves breaking partially on an offshore bar; LDV measurements for waves with and without a net onshore current.” Technical Report H1573, Delft Hydraulics, Delft, The Netherlands, 1994.

(13) Roeber V, Cheung K. F., Kobayashi M. H. “Shock-capturing Boussinesq-type model for nearshore wave processes”. Coastal Engineering, Vol. 57, No. 4, pp. 407–423, 2010.

(14) Briggs, M.J., Synolakis, C.E., Harkins, G.S., Green, D.R., 1995. Laboratory experiments of tsunami runup on a circular island. Tsunamis: 1992–1994, Springer, pp. 569–593, 1995.

(15) Yeh, H.H.J., Liu, P.L.F., Synolakis, C.E. Long-wave Runup Models, World Scientific, Singapore, 1996.

(16) Fuhrman, D.R., Madsen, P.A. “Simulation of nonlinear wave run-up with a high order Boussinesq model”. Coastal Engineering 55, 139–154, 2008.

(17) Zijlema, M., Stelling, G.S., Smit, P. “SWASH: an operational public domain code for simulating wavefields and rapidly variedflows in coastal waters”. Coastal Engineering 58, 992– 1012, 2011.

(18) Watson, G., Barnes, T.C.D. Peregrine, D.H “Numerical modelling of solitary wave propagation and breaking on a beach and runup on a vertical wall”. In: Yeh, H.H.J., Liu, P.L.F., Synolakis, C.E. (Eds.), Long-wave Runup Models. World Scientific, Singapore, pp. 291–297, 1996.

(19) Wei Z., Jia Y., “Simulation of nearshore wave processes by a depth-integrated non-hydrostatic finite element model”. Coastal Engineering 83, 93-107, 2014.