Typha angustifolia L. evaluada como sustrato sólido orgánico natural para biorremediar agua subterránea contaminada con nitrato


Euclides Deago
Gonzalo Pizarro
Enviado: Jun 28, 2016


Actualmente las aguas subterráneas mantienen altos niveles de contaminación por nitrato, incremento de actividades agrícolas. En consecuencia, recientes investigaciones se han enfocado en estudiar Sustratos Sólidos Orgánicos Naturales (SSON) para biorremediar las aguas subterráneas, obteniendo resultados alentadores. Sin embargo, aún existen aspectos que deben profundizarse, tales como el aporte de nutrientes desde los SSON, que son fundamentales para la desnitrificación. Para ayudar a clarificar estos aspectos, investigamos Typha angustifolia L. (T. angustifolia) como SSON. En este artículo presentamos resultados de ensayos de desnitrificación realizados en reactores batch con material detrítico de T. angustifolia colectado en invierno y verano. La liberación de DQO por hidrólisis durante el ensayo de invierno (115 mg DQO/día) casi duplicó al valor obtenido en verano (60 mg DQO/día). Se observaron similares rendimientos de desnitrificación usando carbono orgánico liberado por lixiviación e hidrólisis, lo cual sugiere similitud entre estos carbonos. Además, se comprobó que el nitrógeno biodisponible en el material detrítico fue usado por las bacterias para síntesis celular. Los hallazgos de este estudio indican que es viable la desnitrificación del agua subterránea usando T. angustifolia; además, aportan conocimientos relevantes sobre el uso de materiales naturales como fuentes alternativas de carbono.

Palabras clave

Desnitrificación, Typha angustifolia L., Sustratos Sólidos Orgánicos Naturales, biorremediación, aguas subterráneas.


La descarga de datos todavía no está disponible.


Cómo citar
Deago, E., & Pizarro, G. (1). Typha angustifolia L. evaluada como sustrato sólido orgánico natural para biorremediar agua subterránea contaminada con nitrato. I+D Tecnológico, 11(1), 41-54. Recuperado a partir de https://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/18
Biografía del autor/a

Euclides Deago, Universidad Tecnológica de Panamá

Centro de Investigaciones Hidráulicas e Hidrotécnicas

Gonzalo Pizarro, Pontificia Universidad Católica de Chile

Centro de Investigaciones Hidráulicas e Hidrotécnicas


(1) Chambon, P., et al., WHO Guidelines for drinking-water quality: volume 2. Health Criteria and Other Supporting Information
- Addendum. 1998, World Health Organization: Geneva, Switzerland. p. 1-127.

(2) Ongley, E.D. Lucha Contra la Contaminación Agrícola de los Recursos Hídricos. (Estudio FAO Riego y Drenaje - 55). 1997; Available from: http://www.fao.org/docrep/W2598S/w2598s00.htm#Contents.

(3) Rivett, M.O., et al., Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research, 2008. 42(16): p. 4215-4232.

(4) CCE, INFORME DE LA COMISION: aplicación de la Directiva 91/676/CEE del Consejo relativa a la protección de las aguas contra la contaminación producida por nitratos utilizados en la agricultura, in COM(2002) 407 final 2002: Bruselas.

(5) Wang, X.M. and J.L. Wang, Nitrate removal from groundwater using solid-phase denitrification process without inoculating with
external microorganisms. International Journal of Environmental Science and Technology, 2013. 10(5): p. 955-960.

(6) Zhang, J.M., et al., Behavior of solid carbon sources for biological denitrification in groundwater remediation. Water Science and Technology, 2012. 65(9): p. 1696-1704.

(7) Fan, Z.X., J. Hu, and J.L. Wang, Biological nitrate removal using wheat straw and PLA as substrate. Environmental Technology, 2012. 33(21): p. 2369-2374.

(8) Asaeda, T., et al., Latitudinal characteristics of below- and above- ground biomass of Typha: A modelling approach. Annals of Botany, 2005. 96(2): p. 299-312.

(9) Earl, J.S. Typha angustifolia. Narrow Leaf Cattail. 2004; Available from: http://www.rook.org/earl/bwca/nature/aquatics/typhaan.html.

(10) Firdaus e, B. and S. Khilji, Bioaccumulation of metals from tannery sludge by Typha angustifolia L. African Journal Of Biotechnology, 2008. 7(18): p. 3314-3320.

(11) Nilratnisakorn, S., P. Thiravetyan, and W. Nakbanpote, Synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.): Effects of dye, salinity and metals. Science Of The Total Environment, 2007. 384(1-3): p. 67-76.

(12) Artes, C.N.d.l.C.y.l. Museo Campesino y de los antiguos oficios.
2013 [cited 2013 March].

(13) Hood, W.G., Applying and testing a predictive vegetation model to management of the invasive cattail, Typha angustifolia L., in an oligohaline tidal marsh reveals priority effects caused by non- stationarity. Wetlands Ecology and Management, 2013. 21(4): p. 229-242.

(14) Miklovic, S., Typha angustifolia Management: Implications for Glacial March Restoracion. Student On-Line Journal, 2000. 6(2): p. 11.

(15) Shih, J.G. and S.A. Finkelstein, Range dynamics and invasive tendencies in Typha latifolia and Typha angustifolia in Eastern North America derived from herbarium and pollen records. Wetlands, 2008. 28(1): p. 1-16.

(16) Deago, E.M. and G.E. Pizarro, Denitrification of drinking water using Saccharum spontaneum L. as a natural organic solid substrate. Journal of Water Supply Research and Technology-Aqua, 2013. 62(7): p. 477-486.

(17) Ovez, B., S. Ozgen, and M. Yuksel, Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source. Process Biochemistry, 2006. 41(7): p. 1539- 1544.

(18) Reddy, K.R. and R.D. DeLaune, Biogeochemestry of Wetlands: Science and Applications. First ed. Vol. 1. 2008, Florida: Taylor & Francis Group. 774.

(19) APHA, AWWA, and WEF, Standar Methods for The Examination of Water And Wastewater. 21 ed, ed. A.D. Eaton, et al. 2005, Baltimore, Meryland.

(20) Van Soest, P.J., Use of detergents in the analysis of fibrous feeds.
II. A rapid method for determination of fiber and lignin. Journal Association Official Agronomy Chemistry, 1963. 46: p. 829-835.

(21) Goering, H.K. and P.J. Va Soest, Forage fiber analysis (aparatus, reagent, procedures, and some applications). Agriculture Handbook No 379, ed. A.R.S.-U.S.D.o. Agriculture. 1970, Washington, D. C.

(22) Van Soest, P.J., Environmental and forage quality, in Nutrition Conferences for Feed Manufactures. 1996: Rochester, Ithaca, NY.

(23) Allende, A. and F. Artes, UV-C radiation as a novel technique for keeping quality of fresh processed 'Lollo Rosso' lettuce. Food Research International, 2003. 36(7): p. 739-746.

(24) Aguayo, E., et al., Técnicas emergentes y sostenibles para la desinfección de frutas y hortalizas mínimamente procesadas, in 17° Sympoaium Internacional-Tecnologías y Sanidad de las frutas y hortalizas en postcosecha. 2007: Valencia, España.

(25) Gibert, O., et al., Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB). Bioresource Technology, 2008. 99(16): p. 7587-7596.

(26) Ovez, B., Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source. Process Biochemistry, 2006. 41(6): p. 1289-1295.

(27) Angelidaki, I. and W. Sanders, Assessment of anaerobic biodegrability of macropollutants. Reviews Enviromental Science and Bio/Technology, 2004. 3(2): p. 117-129.

(28) Cokgor, E.U., et al., Respirometric analysis of activated sludge behaviour - I. Assessment of the readily biodegradable substrate. Water Research, 1998. 32(2): p. 461-475.

(29) Chandler, J.A., et al., Predicting methane fermentation biodegradability, in Biotechnology And Bioengineering. 1980. p. 93- 107.

(30) Asaeda, T., P. Sharma, and L. Rajapakse, Seasonal patternsof carbohydrate translocation and synthesis of structural carbon components in Typha angustifolia. Hydrobiologia, 2008. 607: p. 87-101.

(31) Sharma, P., et al., Morphology, growth and carbohydrate storage of the plant Typha angustifolia at different water depths. Chemistry And Ecology, 2008. 24(2): p. 133-145.

(32) Das, S.C. and N. Tanaka, Estimating nitrogen budgets of Typha angustifolia by considering the regrowth shoot productivity and nitrogen content after harvesting aerial organs in different growing seasons Landscape and Ecological Engineering, 2007: p. 99-108.

(33) Ratushnyak, A.A., The investigation of exometabolism of some aquatic macrophytes. Global Journal of Enviroemental Research, 2008. 2(2): p. 92-95.

(34) Howard, R.L., et al., Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2003. 2(12): p. 602-619.

(35) Ovez, B., J. Mergaert, and M. Saglam, Biological denitrification in drinking water treatment using the seaweed Gracilaria verrucosa as carbon source and biofilm carrier. Water Environment Research, 2006. 78(4): p. 430-434.

(36) Shen, Z.Q., et al., Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support. Journal of Hazardous Materials, 2013. 250: p. 431-438.

(37) Foglar, L., L. Sipos, and N. Bolf, Nitrate removal with bacterial cells attached to quartz sand and zeolite from salty wastewaters. World Journal of Microbiology & Biotechnology, 2007. 23(11): p. 1595-1603.

(38) Vavilin, V.A., et al., Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Management, 2008. 28(6): p. 941-953.

(39) vvRobinson-Lora, M.A. and R.A. Brennan, The use of crab- shell chitin for biological denitrification: Batch and column tests. Bioresource Technology, 2009. 100(2): p. 534-541.
performance of organic carbon for use in denitrification beds. Ecological Engineering, 2010. 36(11): p. 1588-1595.

(41) Shen, Z.Q. and J.L. Wang, Biological denitrification using cross- linked starch/PCL blends as solid carbon source and biofilm carrier. Bioresource Technology, 2011. 102(19): p. 8835-8838.

(42) Cuervo-López, F., et al., Principles of denitrifying processes, in Environmental Technologies to Treat Nitrogen Pollution: Principles and Engineering, F. Cervantes, Editor. 2009, IWA Publishing: London. p. 420.

(43) Robertson, W.D., et al., Long-term performance of in situ reactive barriers for nitrate remediation. Ground Water, 2000. 38(5): p. 689- 695.

(44) Rutting, T., et al., Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences, 2011. 8(7): p. 1779-1791.

(45) Smith, J.L., Cycling of nitrogen throubg microbial activity, in Soil Biology: Effects on Soil Quality, B.A.S. J. L. Hatfield, Editor. 1994, Lewis: Boca Raton, Florida, U.S.A. p. 91-120.

(46) Vavilin, V.A., S.V. Rytov, and L.Y. Lokshina, A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresource Technology, 1996. 56(2-3): p. 229-237.

(47) Moran, M.A. and R.E. Hodson, Formation and bacterial utilization of dissolved organic carbon derived from detrital lignocellulose. Limnology and Oceanography 1989. 34(6): p. 1034-1047.

(48) Swift, M., W. Heal, and J. Anderson, Decomposition in Terrestrial Ecosystems. Study in Ecology. Vol. 5. 1979, California, USA.

(49) Moran, M.A., R. Benner, and R.E. Hodson, Kinetics of Microbial Degradation of Vascular Plant Material in Two Wetland Ecosystems. Oecologia, 1989. 79(2): p. 158-167.

(50) Pranskevicius, M. and A. Lietuvninkas, Season-related change of the total carbon in Neris regional park soil. Environmental Engineering, Vols 1-3, ed. D. Cygas and K.D. Froehner. 2009, Vilnius-40: Vilnius Gediminas Technical Univ Press, Technika. 284-291.