Efecto de los parámetros del proceso de bruñido por rodillo en el campo de esfuerzos residuales

##plugins.themes.bootstrap3.article.main##

Edgar López Martínez
Octavio Vázquez Gómez
Héctor Javier Vergara Hernández
Enviado: Jun 8, 2018
Publicado: Jun 11, 2018

Resumen

Mediante la formulación de un modelo matemático resuelto con el método de elemento finito del proceso de bruñido por rodillo, se analizó el efecto de la fuerza, número de pases y avance del rodillo, sobre el campo de esfuerzos residuales, el máximo esfuerzo residual compresivo y su profundidad en discos de acero AISI 1045. La validación del modelo se llevó a cabo comparando los resultados experimentales del porcentaje de variación del diámetro de discos de acero (obtenidos de la literatura) con los obtenidos de la simulación. La principal diferencia entre estos resultados se debe a que en la simulación, el rodillo presenta un comportamiento mecánico rígido. Se observó que la fuerza es el principal parámetro que influye sobre los parámetros de salida. Debido a la importancia del acero API X52 en la industria petrolera, se analizó el efecto de la fuerza de bruñido sobre el campo de esfuerzos residuales.

Palabras clave

Acero AISI 1045, Acero API X52, Bruñido por Rodillo, Campo de Esfuerzo Residual.

Descargas

La descarga de datos todavía no está disponible.

##plugins.themes.bootstrap3.article.details##

Cómo citar
López Martínez, E., Vázquez Gómez, O., & Vergara Hernández, H. (2018). Efecto de los parámetros del proceso de bruñido por rodillo en el campo de esfuerzos residuales. I+D Tecnológico, 14(1), 66-75. https://doi.org/10.33412/idt.v14.1.1804

Citas

(1) E. Rafati and M. S. Mahdieh. “Investigation of Variance of Roller Burnishing Parameters on Surface Quality by Taguchi Approach.” Int. J. Adv. Des. Manuf. Technol., vol. 6, no. 3, pp. 77–81, 2013.

(2) M. Sayahi, S. Sghaier, and H. Belhadjsalah. “Finite element analysis of ball burnishing process: Comparisons between numerical results and experiments.” Int. J. Adv. Manuf. Technol., vol. 67, no. 5–8, pp. 1665–1673, 2013.

(3) K. A. Patel and P. K. Brahmbhatt. “Implementation of Taguchi Method in the Optimization of Roller Burnishing Process Parameter for Surface Roughness.” in Proceedings of First International Conference on Information and Communication Technology for Intelligent Systems: Volume 2, S. C. Satapathy and S. Das, Eds. Cham: Springer International Publishing, 2016, pp. 185–195.

(4) M. F. A. Q. Firas. “The Effect of Roller Burnishing on Surface Hardness and Roughness of Aluminum Alloy.” Int. J. Mech. Appl., vol. 5, no. 2, pp. 37–40, 2015.

(5) S. Mezlini, S. Mzali, S. Sghaier, C. Braham, and P. Kapsa. “Effect of a combined machining / burnishing tool on the roughness and mechanical properties.” Lubr. Sci., vol. 26, pp. 175–187, 2014.

(6) K. Konefal, M. Korzynski, Z. Byczkowska, and K. Korzynska. “Improved corrosion resistance of stainless steel X6CrNiMoTi17-12-2 by slide diamond burnishing.” J. Mater. Process. Technol., vol. 213, no. 11, pp. 1997–2004, 2013.

(7) X. L. Yuan, Y. W. Sun, L. S. Gao, and S. L. Jiang. “Effect of roller burnishing process parameters on the surface roughness and microhardness for TA2 alloy.” Int. J. Adv. Manuf. Technol., vol. 85, no. 5, pp. 1373–1383, Jul. 2016.

(8) N. Kumar, A. Sachdeva, L. P. Singh, and H. Tripathi. “Experimental investigation of effect of roller burnishing process parameters on surface roughness and surface hardness of C40E steel.” Int. J. Mach. Mach. Mater., vol. 18, no. 1/2, p. 185, 2016.

(9) P. Zhang and J. Lindemann. “Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80.” Scr. Mater., vol. 52, no. 6, pp. 485–490, 2005.

(10) S. Díaz Rojas. “Implementación de un procedimiento metodológico para la elaboración de piezas de bruñido por rodillo.” Universidad Central “Marta Abreu” de las Villas, 2006.

(11) M. H. El-Axir. “Investigation into roller burnishing.” Int. J. Mach.
Tools Manuf., vol. 40, no. 11, pp. 1603–1617, 2000.

(12) M. H. El-Axir and A. A. Ibrahim. “Some surface characteristics due to center rest ball burnishing.” J. Mater. Process. Technol., vol. 167, no. 1, pp. 47–53, 2005.

(13) M. H. El-Axir and M. M. El-Khabeery. “Influence of orthogonal burnishing parameters on surface characteristics for various materials.” J. Mater. Process. Technol., vol. 132, no. 1, pp. 82–89, 2003.

(14) S. J. Ebeid and T. A. Ei-Taweel. “Surface improvement through hybridization of electrochemical turning and roller burnishing based on the Taguchi technique.” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 219, no. 5, pp. 423–430, May 2005.

(15) A. M. Hassan and A. S. Al-Bsharat. “Improvements in some properties of non-ferrous metals by the application of the ball-burnishing process.” J. Mater. Process. Technol., vol. 59, no. 3 SPEC. ISS., pp. 250–256, 1996.

(16) D. Butler. “Burnishing for fatigue strength.” Adv. Mater. Process., vol. 163, no. 10, pp. 66–68, 2005.

(17) L. Luca, S. Neagu-Ventzel, and I. Marinescu. “Effects of working parameters on surface finish in ball-burnishing of hardened steels.” Precis. Eng., vol. 29, no. 2, pp. 253–256, 2005.

(18) P. Zhang and J. Lindemann. “Effect of roller burnishing on the high cycle fatigue performance of the high-strength wrought magnesium alloy AZ80.” Scr. Mater., vol. 52, no. 10, pp. 1011–1015, 2005.

(19) W. Bouzid Saï and K. Saï. “Finite element modeling of burnishing of AISI 1042 steel.” Int. J. Adv. Manuf. Technol., vol. 25, no. 5–6, pp. 460–465, 2005.

(20) W. Bouzid, O. Tsoumarev, and K. Saï. “An investigation of surface roughness of burnished AISI 1042 steel.” Int. J. Adv. Manuf. Technol., vol. 24, no. 1, pp. 120–125, Jul. 2004.

(21) K. E. Prasad, S. Nahavandi, M. H. Mohammed, and V. N. Aditya. “Prediction of residual stresses in roller burnished components: a finite element approach.” Int. J. Appl. Eng. Res., vol. 1, no. 2, pp. 153–163, 2006.
(22) W. Zhuang and B. Wicks. “Multipass low-plasticity burnishing induced residual stresses: Three-dimensional elastic-plastic finite element modelling.” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 218, no. 6, pp. 663–668, Jun. 2004.

(23) P. Sartkulvanich, T. Altan, F. Jasso, and C. Rodriguez. “Finite element modeling of hard roller burnishing: An analysis on the effects of process parameters upon surface finish and residual stresses.” J. Manuf. Sci. Eng. Trans. ASME, vol. 129, no. 4, 2007.

(24) A. Saldaña-Robles, E. Aguilera-Gomez, H. Plascencia-Mora, E. R. Ledesma-Orozco, J. F. Reveles-Arredondo, and N. Saldaña-Robles. “Three-dimensional modeling of surface roughness for burnishing process.” DYNA, vol. 90, no. 4, pp. 423–432, 2015.

(25) S. F. Diáz Rojas and T. Robert Núñez, “Bruñido por Rodillo Simple en el Acer4o AISI 1045,” Ing. Mecánica Tecnol. y Desarro., vol. 2, no. 1, pp. 32–40, 2005.

(26) P. S. Prevéy, R. a. Ravindranath, M. Shepard, and T. Gabb. “Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications.” J. Eng. Gas Turbines Power, vol. 128, no. 4, p. 865, 2006.

(27) P. S. Prevéy and J. T. Cammett. “The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6.” Int. J. Fatigue, vol. 26, no. 9, pp. 975–982, 2004.