Desnitrificación del Agua Potable usando Saccharum spontaneum L. como un Sustrato Sólido Orgánico Natural
##plugins.themes.bootstrap3.article.main##
Enviado:
Jun 28, 2016
Publicado: Jun 28, 2016
Publicado: Jun 28, 2016
Resumen
A nivel mundial existe una preocupación acerca de la creciente contaminación por nitrato de cuerpos de agua naturales, como resultado de actividades antropogénicas. Para hacer frente a esta situación, Sustratos Sólidos Orgánicos Naturales (SSON) han sido investigados como fuentes de carbono en la desnitri!cación. A pesar de los avances en este campo, aún existe una falta de conocimiento sobre los procesos cinéticos implicados en la desnitri!cación, utilizando SSON. Por esta razón hemos estudiado la desnitri!cación utilizando Saccharum spontaneum L. (S. spontaneum) como SSON, para entender mejor estos procesos cinéticos. Este documento presenta los resultados experimentales obtenidos para la liberación de carbono orgánico desde S. spontaneum y su uso por las bacterias desnitri!cantes. Pruebas de laboratorio se desarrollaron bajo condiciones anóxicas en reactores batch. Nuestros resultados mostraron que la cinética de liberación de carbono orgánico desde S. spontaneum fue de primer orden (0.08 d-1). Además, la tasa máxima de utilización de nitrato (5.61 mg N-NO3 -/mg VSS·d) y la tasa de desnitri!cación (327mgiiN-NO3 -/L·d) fueron altos. Con este estudio demostramos que es posible obtener altos rendimientos de desnitri!cación utilizando carbono orgánico liberado desde S. spontaneum. Este estudio mejora el conocimiento sobre el uso de SSON, como fuentes alternativas de carbono para la desnitri!cación.
Palabras clave
Desnitrificación, Saccharum spontaneum L., Sustratos Sólidos Orgánicos Naturales, cinética, agua potable.Descargas
La descarga de datos todavía no está disponible.
##plugins.themes.bootstrap3.article.details##
Cómo citar
Deago, E., & Pizarro, G. (2016). Desnitrificación del Agua Potable usando Saccharum spontaneum L. como un Sustrato Sólido Orgánico Natural. I+D Tecnológico, 10(2), 5-16. Recuperado a partir de https://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/20
Citas
(1) Chambon, P., U. Lund, H. Gala-Gorchev, and Ohanian, WHO Guidelines for drinking-water quality: volume 2. Health Criteria and Other Supporting Information - Addendum. 1998, World Health Organization: Geneva, Switzerland. p. 1-127.
(2) Mateju, V., S. Cizinska, J. Krejci, and T. Janoch, Biological Water Denitrification - a Review. Enzyme and Microbial Technology, 1992. 14(3): p. 170-183.
(3) Madigan, M.T., J.M. Martinica and J. Parker, Brock. Biology of Microorganisms. Décima ed. Vol. 1. 2003, New Jersey: Person Prentice Hall. 1011.
(4) Shrimali, M. and K.P. Singh, New methods of nitrate removal from water. Environmental Pollution, 2001. 112(3): p. 351-359.
(5) Rittmann, B.E. and P.L. McCarty, Environmental Biotechnology: Principies and Application. 2001, New York: McGraw-Hill. 745.
(6) Soares, M.I.M., Biological denitrification of groundwater. Water Air And Soil Pollution, 2000. 123(1-4): p. 183-193.
(7) Aslan, S. and A. Turkman, Biological denitrification of drinking water using various natural organic solid substrates. Water Science and Technology, 2003. 48(11-12): p. 489-495.
(8) Ovez, B., S. Ozgen, and M. Yuksel, Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source. Process Biochemistry, 2006.41(7): p. 1539-1544.
(9) Hashemi, S.E., M. Heidarpour, and B. Mostafazadeh-Fard, Nitrate removal using different carbon substrates in a laboratory model. Water Science and Technology, 2011. 63(11): p. 2700-2706.
(10) Robertson, W.D., D.W. Blowes, C.J. Ptacek, and J.A. Cherry, Long-term performance of in situ reactive barriers for nitrate remediation. Ground Water, 2000. 38(5): p. 689-695.
(11) Schipper, L.A. and M. Vojvodic-Vukovic, Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecological Engineering, 2000. 14(3): p. 269-278.
(12) Park, A., P. Friesen, and A.A.S. Serrud, Comparative water fluxes through leaf litter of tropical plantation trees and the invasive grass Saccharum spontaneum in the Republic of Panama. Journal of Hydrology, 2010. 383(3-4): p. 167-178.
(13) Scordia, D., S.L. Cosentino, and T.W. Jeffries, Second generation bioethanol production from Saccharum spontaneum L. ssp aegyptiacum (Willd.) Hack. Bioresource Technology, 2010. 101(14): p. 5358-5365.
(14) Audesirk, T.E. and G. Audesirk, Biology: Life on Earth. 4th ed. Vol. 1. 1995, New Jersey: Pearson Prentice Hall.
(15) Van Soest, P.J., Use of detergents in the analysis of fibrous feeds. II. A rapid method for determination of fiber and lignin. Journal Association Official Agronomy Chemistry, 1963. 46: p. 829-835.
(16) Van Soest, P.J. Environment and forage quality. in Cornell Nutrition Conferences for Feed Manufactures. 1996. Rochester, Ithaca, NY.
(17) Reddy, K.R. and R.D. DeLaune, Biogeochemestry of Wetlands: Science and Applications. First ed. Vol. 1. 2008, Florida: Taylor & Francis Group. 774.
(18) Gibert, O., S. Pomierny, I. Rowe, and R.M. Kalin, Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB). Bioresource Technology, 2008. 99(16): p. 7587-7596.
(19) Vavilin, V.A., S.V. Rytov, and L.Y. Lokshina, A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresource Technology, 1996. 56(2-3): p. 229-237.
(20) Veeken, A., S. Kalyuzhnyi, H. Scharff, and B. Hamelers, Effect of pH and VFA on hydrolysis of organic solid waste. Journal of Environmental Engineering-Asce, 2000. 126(12): p. 1076-1081.
(21) Cokgor, E.U., S. Sozen, D. Orhon, and M. Henze, Respirometric analysis of activated sludge behaviour - I. Assessment of the readily biodegradable substrate. Water Research, 1998. 32(2): p. 461-475.
(22) APHA, AWWA, and WEF, Standar Methods for the Examination of Water and Wastewater, A.P.H.A.A.W.W.A.W.E. Federation, Editor. 2005: Washington DC, USA.
(23) Grady, L.C.P., G.T. Daigge, and H.C. Lim, Biological Wasterwater Treatment. Second ed. 1999, New York: Marcel Dekker, Inc. 1076.
(24) Angelidaki, I. and W. Sanders, Assessment of anaerobic biodegrability of macropollutants. Reviews Enviromental Science and Bio/Technology, 2004. 3(2): p. 117-129.
(25) Melilla J.M., J.D. Aber, A.E. Linkins, A. Ricca, B. Fry, and K.J. Nadelhoffer, CARBON AND NITROGEN DYNAMICS ALONG THE DECAY CONTINUUM - PLANT LITTER TO SOIL ORGANIC-MATTER. Plant and Soil, 1989. 115(2): p. 189-198.
(26) Chandler, J.A., W.J. Jewell, J.M. Goseet, P.J. Soest, and J.B. van Robertson, Predicting methane fermentation biodegradability, in Biotechnology and Bioengineering. 1980. p. 93-107.
(27) Volokita, M., A. Abeliovich, and M.I.M. Soares, Denitrification of groundwater using cotton as energy source. Water Science and Technology, 1996. 34(1-2): p. 379-385.
(28) Xu, Z.X., L. Shao, H.L. Yin, H.Q. Chu, and Y.J. Yao, Biological Denitrification Using Corncobs as a Carbon Source and Biofilm Carrier. Water Environment Research, 2009. 81(3): p. 242-247.
(29) Vavilin, V.A., B. Femandez, J. Palatsi, and X. Flotats, Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Management, 2008. 28(6): p. 941-953.
(30) Soares, M.I.M. and A. Abeliovich, Wheat straw as substrate for water denitrification. Water Research, 1998. 32(12): p. 3790-3794.
(31) Cuervo-López, F., S. Martínez Hernández, A. Texier, and J. Gómez, Principies of denitrifying processes, in Environmental Technologies to Treat Nitrogen Pollution: Principies and Engineering, F. Cervantes, Editor. 2009, IWA Publishing: London. p. 420.
(32) Rabah, F.K.J., M.F. Dahab, and T.C. Zhang, Estimation of the intrinsic maximum substrate utilization rate using batch reactors with denitrifying biofilm: A proposed methodology. Water Environment Research, 2007. 79(8): p. 887-892.
(33) Lin, Y.H., Kinetics of nitrogen and carbon removal in a moving-fixed bed biofilm reactor. Applied Mathematical Modelling, 2008. 32(11): p. 2360-2377.
(34) Cherchi, C., A. Onnis-Hayden, I. El-Shawabkeh, and A.Z. Gu, Implication of Using Different Carbon Sources for Denitrification in Wastewater Treatments. Water Environment Research, 2009. 81(8): p. 788-799.
(35) Su, C.M. and R.W. Puls, Removal of added nitrate in cotton burr compost, mulch compost, and peat: Mechanisms and potential use for groundwater nitrate remediation. Chemosphere, 2007. 66(1): p. 91-98.
(2) Mateju, V., S. Cizinska, J. Krejci, and T. Janoch, Biological Water Denitrification - a Review. Enzyme and Microbial Technology, 1992. 14(3): p. 170-183.
(3) Madigan, M.T., J.M. Martinica and J. Parker, Brock. Biology of Microorganisms. Décima ed. Vol. 1. 2003, New Jersey: Person Prentice Hall. 1011.
(4) Shrimali, M. and K.P. Singh, New methods of nitrate removal from water. Environmental Pollution, 2001. 112(3): p. 351-359.
(5) Rittmann, B.E. and P.L. McCarty, Environmental Biotechnology: Principies and Application. 2001, New York: McGraw-Hill. 745.
(6) Soares, M.I.M., Biological denitrification of groundwater. Water Air And Soil Pollution, 2000. 123(1-4): p. 183-193.
(7) Aslan, S. and A. Turkman, Biological denitrification of drinking water using various natural organic solid substrates. Water Science and Technology, 2003. 48(11-12): p. 489-495.
(8) Ovez, B., S. Ozgen, and M. Yuksel, Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source. Process Biochemistry, 2006.41(7): p. 1539-1544.
(9) Hashemi, S.E., M. Heidarpour, and B. Mostafazadeh-Fard, Nitrate removal using different carbon substrates in a laboratory model. Water Science and Technology, 2011. 63(11): p. 2700-2706.
(10) Robertson, W.D., D.W. Blowes, C.J. Ptacek, and J.A. Cherry, Long-term performance of in situ reactive barriers for nitrate remediation. Ground Water, 2000. 38(5): p. 689-695.
(11) Schipper, L.A. and M. Vojvodic-Vukovic, Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecological Engineering, 2000. 14(3): p. 269-278.
(12) Park, A., P. Friesen, and A.A.S. Serrud, Comparative water fluxes through leaf litter of tropical plantation trees and the invasive grass Saccharum spontaneum in the Republic of Panama. Journal of Hydrology, 2010. 383(3-4): p. 167-178.
(13) Scordia, D., S.L. Cosentino, and T.W. Jeffries, Second generation bioethanol production from Saccharum spontaneum L. ssp aegyptiacum (Willd.) Hack. Bioresource Technology, 2010. 101(14): p. 5358-5365.
(14) Audesirk, T.E. and G. Audesirk, Biology: Life on Earth. 4th ed. Vol. 1. 1995, New Jersey: Pearson Prentice Hall.
(15) Van Soest, P.J., Use of detergents in the analysis of fibrous feeds. II. A rapid method for determination of fiber and lignin. Journal Association Official Agronomy Chemistry, 1963. 46: p. 829-835.
(16) Van Soest, P.J. Environment and forage quality. in Cornell Nutrition Conferences for Feed Manufactures. 1996. Rochester, Ithaca, NY.
(17) Reddy, K.R. and R.D. DeLaune, Biogeochemestry of Wetlands: Science and Applications. First ed. Vol. 1. 2008, Florida: Taylor & Francis Group. 774.
(18) Gibert, O., S. Pomierny, I. Rowe, and R.M. Kalin, Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB). Bioresource Technology, 2008. 99(16): p. 7587-7596.
(19) Vavilin, V.A., S.V. Rytov, and L.Y. Lokshina, A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresource Technology, 1996. 56(2-3): p. 229-237.
(20) Veeken, A., S. Kalyuzhnyi, H. Scharff, and B. Hamelers, Effect of pH and VFA on hydrolysis of organic solid waste. Journal of Environmental Engineering-Asce, 2000. 126(12): p. 1076-1081.
(21) Cokgor, E.U., S. Sozen, D. Orhon, and M. Henze, Respirometric analysis of activated sludge behaviour - I. Assessment of the readily biodegradable substrate. Water Research, 1998. 32(2): p. 461-475.
(22) APHA, AWWA, and WEF, Standar Methods for the Examination of Water and Wastewater, A.P.H.A.A.W.W.A.W.E. Federation, Editor. 2005: Washington DC, USA.
(23) Grady, L.C.P., G.T. Daigge, and H.C. Lim, Biological Wasterwater Treatment. Second ed. 1999, New York: Marcel Dekker, Inc. 1076.
(24) Angelidaki, I. and W. Sanders, Assessment of anaerobic biodegrability of macropollutants. Reviews Enviromental Science and Bio/Technology, 2004. 3(2): p. 117-129.
(25) Melilla J.M., J.D. Aber, A.E. Linkins, A. Ricca, B. Fry, and K.J. Nadelhoffer, CARBON AND NITROGEN DYNAMICS ALONG THE DECAY CONTINUUM - PLANT LITTER TO SOIL ORGANIC-MATTER. Plant and Soil, 1989. 115(2): p. 189-198.
(26) Chandler, J.A., W.J. Jewell, J.M. Goseet, P.J. Soest, and J.B. van Robertson, Predicting methane fermentation biodegradability, in Biotechnology and Bioengineering. 1980. p. 93-107.
(27) Volokita, M., A. Abeliovich, and M.I.M. Soares, Denitrification of groundwater using cotton as energy source. Water Science and Technology, 1996. 34(1-2): p. 379-385.
(28) Xu, Z.X., L. Shao, H.L. Yin, H.Q. Chu, and Y.J. Yao, Biological Denitrification Using Corncobs as a Carbon Source and Biofilm Carrier. Water Environment Research, 2009. 81(3): p. 242-247.
(29) Vavilin, V.A., B. Femandez, J. Palatsi, and X. Flotats, Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Management, 2008. 28(6): p. 941-953.
(30) Soares, M.I.M. and A. Abeliovich, Wheat straw as substrate for water denitrification. Water Research, 1998. 32(12): p. 3790-3794.
(31) Cuervo-López, F., S. Martínez Hernández, A. Texier, and J. Gómez, Principies of denitrifying processes, in Environmental Technologies to Treat Nitrogen Pollution: Principies and Engineering, F. Cervantes, Editor. 2009, IWA Publishing: London. p. 420.
(32) Rabah, F.K.J., M.F. Dahab, and T.C. Zhang, Estimation of the intrinsic maximum substrate utilization rate using batch reactors with denitrifying biofilm: A proposed methodology. Water Environment Research, 2007. 79(8): p. 887-892.
(33) Lin, Y.H., Kinetics of nitrogen and carbon removal in a moving-fixed bed biofilm reactor. Applied Mathematical Modelling, 2008. 32(11): p. 2360-2377.
(34) Cherchi, C., A. Onnis-Hayden, I. El-Shawabkeh, and A.Z. Gu, Implication of Using Different Carbon Sources for Denitrification in Wastewater Treatments. Water Environment Research, 2009. 81(8): p. 788-799.
(35) Su, C.M. and R.W. Puls, Removal of added nitrate in cotton burr compost, mulch compost, and peat: Mechanisms and potential use for groundwater nitrate remediation. Chemosphere, 2007. 66(1): p. 91-98.