Landslide susceptibility map of San Miguelito district, Panama, based on geographic information system
Main Article Content
Published: Jan 31, 2019
Abstract
A landslide susceptibility map of San Miguelito District (Panama) was derived through the analysis and validation of a bivariate
statistical model, which was developed incorporating Geographic Information System tools (GIS). The dataset considered in this study were a
landslide inventory map and parameters maps. For this purpose, the study by was started defining risk management concepts and their relationship
with the suitable parameters that are involve in slope failures for each risk concept case, which in susceptibility matter maps were made of elevation,
slope, curvature, and aspect. Also, proximity to roads and rivers mapping, and a geotechnical map of San Miguelito. In addition, utilizing all disaster
registered at the website Desinventar (2018), two landslide inventory maps were generated. One of them for the model and the other one for the
validation process. With the generated dataset, was developed the landslide susceptibility index method (LSI) to derive the landslide susceptibility
in the study area, classified in seven levels of probability of landslide occurrence. The outcomes conclude that a 68.2% of San Miguelito shows a
moderate to very high landslide susceptibility, where Corregimiento Arnulfo Arias is the most susceptible. According to the validating procedure,
the landslide susceptibility map can predict in an 88% of probabilities that a high susceptibility zone in the study area does exist.
Keywords
Landslide susceptibility, San Miguelito, geographic information system, parameters map, landslide inventory map, landslide statistical index.Downloads
Article Details
References
(2) DesInventar. “Sistema de inventario de efecto de desastres.” Disponible:https://www.desinventar.org/es/database. Consultado el 21 de agosto de 2018.
(3) B. Bacic y M. Uljarevic. “Slope Stability Analysis”. Journal of Faculty of Civil Engineering, Subotica, Serbia, pp. 379-384, 2014.
(4) D. J. Varnes. “Slope Movement Types and Processes.” Analysis and Control, National Research Council, Washington DC, Transportation Research Board, Special Report 176, National Academy Press, Washington DC, pp. 11-33, 1978.
(5) Contraloría General de la Republica. “Censo 2010”. Disponible:http://www.censos2010.gob.pa/Resultados/Cuadros.aspx. Consultado el 21 de agosto de 2018.
(6) C. Venkataramaiah. “Geotechnical Engineering.” New Age International Publishers, third edition, New Delhi, pp. 318, 2006.
(7) Y. Cruz y V. Medina. “Evaluación de áreas vulnerables y de fallas en algunos taludes en el distrito de San Miguelito.” Trabajo de tesis de pregrado, Universidad Tecnológica de Panamá, 1994.
(8) D. Barria y M. Motta. “Evaluacion del riesgo por deslizamiento de tierras del distrito de San Miguelito.” Trabajo de tesis de pregrado, Universidad Tecnológica de Panamá, 1993.
(9) N. Santacana, B. Baeza, A. De Paz, J. Marturiá. “A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain).” Kluwer Academic Publishers, Vol. 30, pp. 281, 2003.
(10) C.F. Mahler, E. Varanda y L. C. De Oliveira. “Analytical Model of Landslide Risk Using GIS.” Open Journal of Geology, pp. 7, 2012.
(11) D. J. Varnes. “Landslide hazard zonation: a review of principle and practices.” Paris: UNESCO, 1984.
(12) SIMDE/GTZ. “Guía para la gestión local de deslizamientos.” San Salvador, 2007.
(13) C. Chalkias, M. Ferentinou y C. Polykretis. “GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece.” Geosciences, edicion 4, pp. 15, 2014.
(14) T. Glade y M. Crozier. “A Review of Scale Dependency in Landslide Hazard and Risk Analysis.” Landslide Hazard and Risk, Wiley, pp. 102, 2005.
(15) E. Brabb y B. Harrod. Landslides: Extent and Economic Significance. Proceedings of the 28th international geologic congress symposium on landslides. Washington D.C., 1989.
(16) J. Suarez. “Deslizamientos y estabilidad de taludes en zonas tropicales.” Ingeniería de Suelos Ltda: Publicaciones UIS, Instituto de Investigaciones sobre Erosión y Deslizamientos, Bucaramanga, Colombia, pp. 358, 1998.
(17) N. Santacana. “Análisis de la susceptibilidad del terreno a la formación de deslizamientos superficiales y grandes deslizamientos mediante el uso de sistemas de información geográfica. Aplicación a la cuenca alta del río Llobregat.” Barcelona, España: Universidad Politénica de Catalunya, 2001.
(18) S. Lee. “Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data.” International Journal of Remote Sensing; Vol. 26, pp. 1477-1491, 2005.
(19) A. Akgun, C. Kincal y P. Biswajeet. “Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey).” Environmental Monitoring and Assessment, vol. 184, pp. 5453-5470, 2012.
(20) P. Magliulo, A. Di Lisio y F. Russo. “Comparison of GIS-based methodologies for the landslide susceptibility assessment.” Geoinformatica, vol. 13, pp. 253-265, 2008.
(21) A. Nisa y W. Mohd. “GIS Based Multi-Criteria Decision Making for Landslide Hazard Zonation.” Social and Behavioral Science, Vol. 35, pp. 595-602, 2012.
(22) H. Sato y T. Sekiguchi. “Landslide Susceptibility Mapping of the Kuchisakamoto Area, Central Japan using DTM from Airborne LiDAR.” Bulletin of the Geographical Survey Institute, pp. 23-35, 2005.
(23) J. Jiménez. “Análisis de la susceptibilidad a los movimientos de ladera mediante un SIG en la cuenca vertiente al embalse de Rules, Granada.” Tesis doctoral, Universidad de Granada, Departamento de Ingenieria Civil, Granada, 2005.
(24) Y. W. Wenping Li, Q. Wang, Q. L. Liu, D. Yang, M. Xing, Y. Pei y S. Yan. “Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China.” Arabian Journal of Geosciences, vol. 9, pp. 84, 2016.
