Ubicación y dimensionamiento óptimo de Generación Distribuida en redes de distribución usando PSO

##plugins.themes.bootstrap3.article.main##

Alexander Aguila-Téllez
Diego González
Gonzalo Gutiérrez
Leony Ortiz

Publicado: Jul 20, 2022

Resumen

Este artículo presenta la ubicación y el dimensionamiento óptimo de la generación distribuida con inyección de potencia activa en sistemas de distribución radial mediante un flujo de potencia óptimo a través del algoritmo de optimización por enjambre de partículas (PSO). Los criterios propuestos como objetivos son minimizar las pérdidas de potencia en las líneas y mejorar el perfil de los voltajes reduciendo las desviaciones con respecto al valor nominal. Como variable de función objetivo también se define el cumplimiento de estos criterios considerando la minimización de los costos asociados a la generación distribuida. Las restricciones propuestas están sujetas al balance de potencias, los márgenes permisibles de voltaje y los límites de inyección de potencia de la generación distribuida. El análisis se llevó a cabo en los sistemas de distribución radial IEEE de 15 barras e IEEE de 33 barras como casos de estudio, y la implementación se desarrolló en el entorno del software matemático MATLAB. La metodología utilizada (PSO) también permitió mejorar los índices de condiciones de calidad, como lo son la desviación de voltaje promedio y la desviación máxima del voltaje. Los resultados obtenidos muestran que el método utilizado para la ubicación y el dimensionamiento óptimo de la generación distribuida logren de forma óptima minimizar las pérdidas de potencia, mejorar los niveles de voltaje cumpliendo con el objetivo de mínimo costo.

Palabras clave

Generación distribuida, sistemas de distribución, optimización de enjambre de partículas, perfil de voltaje, minimización de pérdida de potencia

Descargas

La descarga de datos todavía no está disponible.

##plugins.themes.bootstrap3.article.details##

Cómo citar
Aguila-Téllez, A., González, D., Gutiérrez, G., & Ortiz, L. (2022). Ubicación y dimensionamiento óptimo de Generación Distribuida en redes de distribución usando PSO. I+D Tecnológico, 18(1), 50-68. https://doi.org/10.33412/idt.v18.1.3219

Citas

(1) S. K. Saha, S. Banerjee, D. Maity, and C. K. Chanda, “Optimal Sizing and Location Determination of Distributed Generation in Distribution Networks,” pp. 1–5, 2015.
(2) M. Gandomkar, M. Vakilian, and M. Ehsan, “Optimal distributed generation allocation in distribution network using Hereford Ranch algorithm,” 2005 Int. Conf. Electr. Mach. Syst., vol. 2, p. 916–918 Vol. 2, 2005.
(3) S. Jain, S. Kalambe, G. Agnihotri, and A. Mishra, “Distributed generation deployment: State-of-the-art of distribution system planning in sustainable era,” Renew. Sustain. Energy Rev., vol. 77, no. April, pp. 363–385, 2017.
(4) A. Bayat, A. Bagheri, and R. Noroozian, “Optimal siting and sizing of distributed generation accompanied by reconfiguration of distribution networks for maximum loss reduction by using a new UVDA-based heuristic method,” Int. J. Electr. Power Energy Syst., vol. 77, pp. 360–371, 2016.
(5) O. D. Montoya, S. Member, A. Grajales, A. Garces, S. Member, and C. A. Castro, “Distribution Systems Operation Considering Energy Storage Devices and Distributed Generation,” IEEE Lat. Am. Trans., vol. 15, no. 5, pp. 890–900, 2017.
(6) D. B. Prakash and C. Lakshminarayana, “Multiple DG Placements in Distribution System for Power Loss Reduction Using PSO Algorithm,” Procedia Technol., vol. 25, no. Raerest, pp. 785–792, 2016.
(7) A. Águila Téllez, G. López, I. Isaac, and J. W. González, “Optimal reactive power compensation in electrical distribution systems with distributed resources. Review,” Heliyon, vol. 4, no. 8, p. e00746, Aug. 2018.
(8) M. Jamil and A. S. Anees, “Optimal sizing and location of SPV (solar photovoltaic) based MLDG (multiple location distributed generator) in distribution system for loss reduction, voltage profile improvement with economical benefits,” Energy, vol. 103, pp. 231–239, 2016.
(9) L. Ortiz-Matos, A. Aguila-Tellez, R. C. Hincapié-Reyes, and J. W. González-Sanchez, “Multi-Criteria Optimization of the Deployment of a Grid for Rural Electrification Based on a Heuristic Method,” IOP Conf. Ser. Earth Environ. Sci., vol. 73, no. 1, p. 012020, Jul. 2017.
(10) P. D. Prasad, V. C. V. Reddy, and T. G. Manohar, “Optimal renewable resources placement in distribution networks by combined power loss index and whale optimization algorithms,” J. Electr. Syst. Inf. Technol., 2017.
(11) U. Sultana, A. B. Khairuddin, A. S. Mokhtar, N. Zareen, and B. Sultana, “Grey wolf optimizer based placement and sizing of multiple distributed generation in the distribution system,” Energy, vol. 111, pp. 525–536, 2016.
(12) M. Bazrafshan and N. Gatsis, “Placing and sizing distributed photovoltaic generators for optimal reactive power compensation,” 2015 IEEE Glob. Conf. Signal Inf. Process. Glob. 2015, pp. 1136–1140, 2016.
(13) J. H. Angelim and C. M. Affonso, “Impact of distributed generation technology and location on power system voltage stability,” IEEE Lat. Am. Trans., vol. 14, no. 4, pp. 1758–1764, 2016.
(14) I. A. Mohamed and M. Kowsalya, “Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization,” Swarm Evol. Comput., vol. 15, pp. 58–65, 2014.
(15) H. Doagou-mojarrad, G. B. Gharehpetian, H. Rastegar, and J. Olamaei, “Optimal placement and sizing of DG ( distributed generation ) units in distribution networks by novel hybrid evolutionary algorithm,” Energy, vol. 54, pp. 129–138, 2013.
(16) C. G. Tarôco, R. H. C. Takahashi, and E. G. Carrano, “Multiobjective planning of power distribution networks with facility location for distributed generation,” Electr. Power Syst. Res., vol. 141, pp. 562–571, 2016.
(17) P. S. Georgilakis and N. D. Hatziargyriou, “Optimal Distributed Generation Placement in Power Distribution Networks: Models, Methods, and Future Research,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3420–3428, Aug. 2013.
(18) P. V. Babu and S. P. Singh, “Optimal Placement of DG in Distribution network for Power loss minimization using NLP & PLS Technique,” Energy Procedia, vol. 90, no. December 2015, pp. 441–454, 2016.
(19) S. Kaur, G. Kumbhar, and J. Sharma, “A MINLP technique for optimal placement of multiple DG units in distribution systems,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 609–617, 2014.
(20) A. Uniyal and A. Kumar, “Comparison of optimal DG placement using CSA, GSA, PSO and GA for minimum real power loss in radial distribution system Ankit,” 2016 IEEE 6th Int. Conf. Power Syst. ICPS 2016, pp. 1–6, 2016.
(21) D. B. Prakash and C. Lakshminarayana, “Multiple DG Placements in Distribution System for Power Loss Reduction Using PSO Algorithm,” Procedia Technol., vol. 25, no. Raerest, pp. 785–792, 2016.
(22) S. Motiian, M. Aghababaie, and H. Soltanian-Zadeh, “Particle Swarm Optimization ( PSO ) of Power Allocation in Cognitive Radio Systems with Interference Constraints,” 4th IEEE Int. Conf. Broadband Netw. Multimed. Technol., pp. 558–562, 2011.
(23) H. a. M. Prasanna, M. V. L. Kumar, a. G. Veeresha, T. Ananthapadmanabha, and a. D. Kulkarni, “Multi objective optimal allocation of a distributed generation unit in distribution network using PSO,” 2014 Int. Conf. Adv. Energy Convers. Technol., pp. 61–66, 2014.
(24) S. Kumar, K. K. Mandal, and N. Chakraborty, “Comparative Performance Study of Various PSO Techniques for Multiple Allocations of DG Units in Radial Distribution System,” 2015 IEEE Power, Commun. Inf. Technol. Conf. PCITC 2015 - Proc., pp. 878–883, 2016.
(25) M. Farasat, S. Mehraeen, A. Arabali, and A. Trzynadlowski, “GA-based optimal power flow for microgrids with DC distribution network,” in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 3372–3379.
(26) K. Mistry, “MSFL Based Determination of Optimal Size and Location of Distributed Generation in Radial Distribution System,” pp. 530–535, 2016.
(27) M. Dixit, P. Kundu, and H. R. Jariwala, “Optimal placement and sizing of DG in Distribution system using Artificial Bee Colony Algorithm,” in 2016 IEEE 6th International Conference on Power Systems (ICPS), 2016, pp. 1–6.
(28) R. Prakash and B. C. Sujatha, “Optimal placement and sizing of DG for power loss minimization and VSI improvement using bat algorithm,” 2016 Natl. Power Syst. Conf. NPSC 2016, 2017.
(29) E. S. Ali, S. M. Abd Elazim, and A. Y. Abdelaziz, “Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations,” Renew. Energy, vol. 101, pp. 1311–1324, Feb. 2017.
(30) D. Rama Prabha and T. Jayabarathi, “Optimal placement and sizing of multiple distributed generating units in distribution networks by invasive weed optimization algorithm,” Ain Shams Eng. J., vol. 7, no. 2, pp. 683–694, 2016.
(31) P. Dinakara Prasasd Reddy, V. C. Veera Reddy, and T. Gowri Manohar, “Ant Lion optimization algorithm for optimal sizing of renewable energy resources for loss reduction in distribution systems,” J. Electr. Syst. Inf. Technol., pp. 1–18, 2017.
(32) O. Amanifar, “Optimal Distributed Generation Placement and Sizing for Loss and THD Reduction and Voltage Profile Improvement in Distribution Systems Using Particle Swarm Optimization and sensitivity analysis,” Electr. Power Distrib. Networks (EPDC), 2011 16th Conf., pp. 1–7, 2011.
(33) A. M. Imran, M. Kowsalya, and D. P. Kothari, “A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks distribution networks,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 461–472, 2014.
(34) S. Kansal, V. Kumar, and B. Tyagi, “Hybrid approach for optimal placement of multiple DGs of multiple types in distribution networks,” Int. J. Electr. Power Energy Syst., vol. 75, pp. 226–235, 2016.
(35) O. Amanifar and M. E. H. Golshan, “Optimal DG allocation and sizing for mitigating voltage sag in distribution systems with respect to economic consideration using Particle Swarm Optimization,” 2012 Proc. 17th Conf. Electr. Power Distrib. EPDC 2012, 2012.
(36) A. A. Tellez, D. F. C. Galarza, and L. O. Matos, “Analysis of power losses in the asymmetric construction of electric distribution systems,” IEEE Lat. Am. Trans., vol. 13, no. 7, pp. 2190–2194, 2015.
(37) B. Mahdad and K. Srairi, “Adaptive differential search algorithm for optimal location of distributed generation in the presence of SVC for power loss reduction in distribution system,” Eng. Sci. Technol. an Int. J., vol. 19, no. 3, pp. 1266–1282, 2016.
(38) A. Aguila and J. Wilson, “Technical and Economic Assessment of the Implementation of Measures for Reducing Energy Losses in Distribution Systems,” IOP Conf. Ser. Earth Environ. Sci., vol. 73, no. 1, p. 012018, Jul. 2017.
(39) G. Niazi and M. Lalwani, “PSO Based Optimal Distributed Generation Placement and Sizing in Power Distribution Networks : A Comprehensive Review,” no. 1, pp. 305–311, 2017.
(40) F. Castillo, A. Aguila, J. González, and S. Member, “Analysis of Stability of Tension and Losses of Electric Power in Distribution Networks with Distributed Generation,” IEEE Lat. Am. Trans., vol. 14, no. 11, pp. 4491–4498, 2016.
(41) K. Muthukumar and S. Jayalalitha, “Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique,” Int. J. Electr. Power Energy Syst., vol. 78, pp. 299–319, 2016.
(42) O. Badran, H. Mokhlis, S. Mekhilef, W. Dahalan, and J. Jallad, “Minimum switching losses for solving distribution NR problem with distributed generation,” IET Gener. Transm. Distrib., vol. 12, no. 8, pp. 1790–1801, 2018.
(43) S. Devi and M. Geethanjali, “Application of Modified Bacterial Foraging Optimization algorithm for optimal
(44) placement and sizing of Distributed Generation,” Expert Syst. Appl., vol. 41, no. 6, pp. 2772–2781, 2014.
(45) J. S. de Souza, Y. P. Molina, C. S. de Araujo, and ..., “Modified Particle Swarm Optimization Algorithm for Sizing Photovoltaic System,” IEEE Lat. Am., vol. 15, no. 2, pp. 283–289, 2017.