Técnicas de bajo consumo en climas tropicales para el ahorro de energía y agua en la edificación: Una revisión de estudios experimentales

##plugins.themes.bootstrap3.article.main##

Katherine Chung-Camargo
Mariana Bencid
Dafni Mora
Miguel Alejandro Chen-Austin

Publicado: Jul 20, 2022

Resumen

Se han desarrollado diferentes investigaciones a lo largo de los años, y la investigación experimental toma tiempo para recopilar la información. Considerando esto, el objetivo de esta investigación es realizar una revisión bibliográfica de las estrategias adoptadas por los países con climas tropicales para lograr la eficiencia energética e hídrica en edificaciones, así como el confort de los ocupantes con el fin de evaluar el desempeño de estas técnicas para cada tipo de clima tropical (es decir, selva tropical, monzón tropical, sabana tropical y subtropical). Se presenta una metodología utilizando palabras clave y criterios de exclusión para la mejor selección de los artículos. Se realiza un resumen de cada investigación experimental. Los resultados de esta investigación demostraron que es posible aplicar diferentes técnicas a un mismo tipo de edificación y tener el ahorro de interés (hídrico, energía o confort) sin limitar a una técnica especifica. Algunos climas tropicales tienen una tendencia a usar solo un tipo de ahorro como confort y otros usan energía y agua. Este artículo es un recurso que puede ser utilizado por cualquier persona interesada en estudios experimentales en clima tropical. En el cual se ahorra tiempo en buscar la información para estrategias de bajo consumo, tipo de edificación y técnicas implementadas en cada país.

Descargas

La descarga de datos todavía no está disponible.

##plugins.themes.bootstrap3.article.details##

Cómo citar
Chung-Camargo, K., Bencid, M., Mora, D., & Chen-Austin, M. (2022). Técnicas de bajo consumo en climas tropicales para el ahorro de energía y agua en la edificación: Una revisión de estudios experimentales. I+D Tecnológico, 18(1), 5-18. https://doi.org/10.33412/idt.v18.1.3461

Citas

(1) “IEA – International Energy Agency.” https://www.iea.org/ (accessed Feb. 12, 2022).
(2) P. Torcellini, S. Pless, M. Deru, and D. Crawley, “Zero Energy Buildings: A Critical Look at the Definition,” ACEEE Summer Study Pacific Grove, p. 15, 2006.
(3) W. Feng et al., “A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings,” Renew. Sustain. Energy Rev., vol. 114, p. 109303, 2019, doi: 10.1016/j.rser.2019.109303.
(4) A. Lenoir, G. Baird, and F. Garde, “Post-occupancy evaluation and experimental feedback of a net zero-energy building in a tropical climate,” Archit. Sci. Rev., vol. 55, no. 3, pp. 156–168, 2012, doi: 10.1080/00038628.2012.702449.
(5) S. N. Al-Saadi and A. K. Shaaban, “Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis,” Renew. Sustain. Energy Rev., vol. 112, no. February, pp. 299–316, 2019, doi: 10.1016/j.rser.2019.05.049.
(6) S. H. Lek and Z. Min, “Energy efficiency for tropical campus,” ASHRAE J., vol. 48, no. 5, pp. 48–53, 2006.
(7) M. Doctor-Pingel, H. Lavocat, and N. Bhavaraju, “Performance of naturally ventilated buildings in a warm-humid climate: a case study of Golconde Dormitories, South India,” Archit. Sci. Rev., vol. 60, no. 3, pp. 205–214, 2017, doi: 10.1080/00038628.2017.1300133.
(8) L. Moosavi, N. Mahyuddin, and N. Ghafar, “Atrium cooling performance in a low energy office building in the Tropics, a field study,” Build. Environ., vol. 94, no. P1, pp. 384–394, 2015, doi: 10.1016/j.buildenv.2015.06.020.
(9) X. Sun, Z. Gou, and S. S. Y. Lau, “Cost-effectiveness of active and passive design strategies for existing building retrofits in tropical climate: Case study of a zero energy building,” J. Clean. Prod., vol. 183, pp. 35–45, 2018, doi: 10.1016/j.jclepro.2018.02.137.
(10) M. Abrahams and I. Ayoola, “Assessing residential building energy efficiency in the Caribbean environment: A case study of Trinidad and Tobago,” West Indian J. Eng., vol. 41, no. 2, pp. 31–42, 2019.
(11) J. Iwaro and A. Mwasha, “Effects of Using Coconut Fiber–Insulated Masonry Walls to Achieve Energy Efficiency and Thermal Comfort in Residential Dwellings,” J. Archit. Eng., vol. 25, no. 1, p. 04019001, 2019, doi: 10.1061/(asce)ae.1943-5568.0000341.
(12) T. S. Mari, S. Kuppusamy, S. Gunasagaran, S. Srirangam, and F. L. Ang, “Natural Brise Soleil: The Effects of Vegetation Shading on Thermal Environment of Residential Buildings in Hot and Humid Tropics,” IOP Conf. Ser. Earth Environ. Sci., vol. 268, no. 1, pp. 0–7, 2019, doi: 10.1088/1755-1315/268/1/012013.
(13) S. Yuliani, G. Hardiman, E. Setyowati, W. Setyaningsih, and Y. Winarto, “Thermal behaviour of concrete and corrugated zinc green roofs on low-rise housing in the humid tropics,” Archit. Sci. Rev., no. April, 2020, doi: 10.1080/00038628.2020.1751054.
(14) S. Charoenkit, S. Yiemwattana, N. Rachapradit, S. Laywisadkul, N. Navapan, and T. Changnawa, “Thermal performance of living walls in thailand,” Proc. Annu. Int. Conf. Archit. Civ. Eng., no. Ace, pp. 272–277, 2019, doi: 10.5176/2301-394X_ACE19.555.
(15) K. M. Al-Obaidi, M. Ismail, and A. M. Abdul Rahman, “Design and performance of a novel innovative roofing system for tropical landed houses,” Energy Convers. Manag., vol. 85, pp. 488–504, 2014, doi: 10.1016/j.enconman.2014.05.101.
(16) B. Joseph, B. Kichonge, and T. Pogrebnaya, “Semi-Transparent Building Integrated Photovoltaic Solar Glazing: Investigations of Electrical and Optical Performances for Window Applications in Tropical Region,” J. Energy, vol. 2019, pp. 1–10, 2019, doi: 10.1155/2019/6096481.
(17) G. H. Lim, M. B. Hirning, N. Keumala, and N. A. Ghafar, “Daylight performance and users’ visual appraisal for green building offices in Malaysia,” Energy Build., vol. 141, pp. 175–185, 2017, doi: 10.1016/j.enbuild.2017.02.028.
(18) L. Wells, B. Rismanchi, and L. Aye, “A review of Net Zero Energy Buildings with reflections on the Australian context,” Energy Build., vol. 158, pp. 616–628, 2018, doi: 10.1016/j.enbuild.2017.10.055.
(19) M. A. C. Munaaim, K. M. Al-Obaidi, and M. Azizul Abd Rahim, “Performance comparison of solar assisted and inverter air conditioning systems in Malaysia,” J. Des. Built Environ., vol. 17, pp. 53–61, 2017, doi: 10.22452/jdbe.sp2017no1.5.
(20) R. Control, E. Device, F. O. R. Reducing, A. I. R. Conditioner, and E. Consumption, “REMOTE CONTROL EXTENSION DEVICE FOR REDUCING AIR CONDITIONER ENERGY CONSUMPTION,” vol. 6, pp. 329–335, 2019.
(21) O. Alvarez, M. Sanjuan, F. Amaya, and A. Bula, “VAV System Operating in an Educational Building Under Tropical Conditions: Energy Analysis.” Jul. 2013, doi: 10.1115/ES2013-18146.
(22) T. S. Larsen et al., “Occupants Influence on the Energy Consumption of Danish Domestic Buildings,” p. 77, 2010.
(23) O. T. Masoso and L. J. Grobler, “The dark side of occupants’ behaviour on building energy use,” Energy Build., vol. 42, no. 2, pp. 173–177, 2010, doi: 10.1016/j.enbuild.2009.08.009.
(24) D. K. Ahadzie, R. Opoku, S. N. Opoku Ware, and H. Mensah, “Analysis of occupant behaviour in the use of air-conditioners in public buildings in developing countries: evidence from Ghana,” Int. J. Build. Pathol. Adapt., no. July, 2020, doi: 10.1108/IJBPA-01-2020-0001.
(25) C. C. Ohueri, W. I. Enegbuma, and R. Kenley, “Energy efficiency practices for Malaysian green office building occupants,” Built Environ. Proj. Asset Manag., vol. 8, no. 2, pp. 134–146, 2018, doi: 10.1108/BEPAM-10-2017-0091.
(26) A. Bonoli, E. Di Fusco, S. Zanni, I. Lauriola, V. Ciriello, and V. Di Federico, “Green smart technology for water (GST4Water): Life cycle analysis of urban water consumption,” Water (Switzerland), vol. 11, no. 2, pp. 1–12, 2019, doi: 10.3390/w11020389.
(27) W. Miller and L. Buys, “Anatomy of a sub-tropical Positive Energy Home (PEH),” Sol. Energy, vol. 86, no. 1, pp. 231–241, 2012, doi: 10.1016/j.solener.2011.09.028.
(28) S. Babu, A. Lamano, and P. Pawar, “Sustainability assessment of a laboratory building: Case study of highest rated laboratory building in Singapore using Green Mark rating system,” Energy Procedia, vol. 122, no. September, pp. 751–756, 2017, doi: 10.1016/j.egypro.2017.07.391.
(29) M. Y. L. Chew, S. Conejos, and F. H. Bin Azril, “Design for maintainability of high-rise vertical green facades,” Build. Res. Inf., vol. 47, no. 4, pp. 453–467, 2019, doi: 10.1080/09613218.2018.1440716.