Campos magnéticos: influencia de sus propiedades en el proceso productivo agrícola

##plugins.themes.bootstrap3.article.main##

Pablo Montero-Prado
César Alberto Almanza-Cruz

Publicado: Jul 20, 2022

Resumen

Los esfuerzos actuales por alcanzar los Objetivos de Desarrollo Sostenible para combatir y erradicar el hambre han llevado a distintos sectores especializados de la sociedad a lanzarse a la búsqueda de caminos que conduzcan a ella. En este sentido, el enfoque de investigación, desarrollo e innovación (I+D+i) ha generado diversos métodos optimizados para obtener los mayores beneficios posibles, a través de importantes aportes. El objetivo de este documento es mostrar los avances en la aplicación de campos magnéticos como herramienta para mejorar la productividad de diferentes cultivos. Considerando los principales métodos de tratamiento, características de la aplicación, y la explicación de los posibles efectos ocasionados en las entidades vegetales. Se ha intentado utilizar artículos científicos de diferentes bases de datos, pero con importantes niveles de fiabilidad, medidos a través de los índices de impacto implicados. Como herramienta para conocer la situación actual de este tema, se enfocó, con contadas excepciones, la revisión de documentos publicados, preferentemente, durante la última década, basados ​​principalmente en conceptualizaciones especializadas.

Descargas

La descarga de datos todavía no está disponible.

##plugins.themes.bootstrap3.article.details##

Cómo citar
Montero-Prado, P., & Almanza-Cruz, C. (2022). Campos magnéticos: influencia de sus propiedades en el proceso productivo agrícola. I+D Tecnológico, 18(1), 19-26. https://doi.org/10.33412/idt.v18.1.3498

Citas

(1) United Nations 2015 United Nations Sustainable Development – 17 Goals to Transform Our World. [online] Available at: https://www.un.org/sustainabledevelopment/
(2) United Nations 2015 Goal 2: Zero Hunger – United Nations Sustainable Development. [online] Available at: https://www.un.org/sustainabledevelopment/hunger/
(3) Food and Agriculture Organization of the United Nations 2016 Save and Grow in practice: maize, rice, wheat. [online] Available at: http://www.fao.org/ag/save-and-grow/MRW/index_en.html
(4) Food and Agriculture Organization 2002 Agricultura mundial: hacia los años 2015/2030. [online] Available at: http://www.fao.org/3/y3557s/y3557s08.htm
(5) Hincapie E. A., Osorio J. T. and Lopez L. B. 2010. Efecto del campo magnético sobre la germinación de la Leucaena Leucocephala. Scientia Et Technica. 16(44), 337–41
(6) Food and Agriculture Organization of the United Nation. 2020. FAOSTAT statistical database. [online] Available at: http://www.fao.org/faostat/en/#data/QC
(7) Mahajan T. S. and Pandey O. P. 2014. Magnetic-time model at off-season germination International Agrophysics. 28(1), 57–62.
(8) Radhakrishnan R. and Ranjitha Kumari B. D. 2012. Pulsed magnetic field: A contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiology and Biochemistry. 51, 139–44.
(9) Chaudhary R. C., Nanda J. S. and Tran D. V. 2003. Problemas y limitaciones de la producción de arroz. Comisión Internacional del Arroz. Organización de las Naciones Unidas para la Agricultura y la Alimentación. [online] Available at: http://www.fao.org/3/y2778s/y2778s04.htm
(10) De Souza A. 2014. Improvement of the seed germination, growth and yield of onion plants by extremely low frequency non-uniform magnetic fields. Scientia horticulturae, 176(11), 63–69.
(11) Florez M., Martinez E. and Carbonell V. 2014. Germination and initial growth of triticale seeds under stationary magnetic fields. Journal of Advances in Agriculture, 2(2), 72–79.
(12) Katsenios N., Bilalis D., Efthimiadou A., Aivalakis G., Nikolopoulou A-E., Karkanis A. and Travlos I. 2016. Role of pulsed electromagnetic field on enzyme activity, germination, plant growth and yield of durum wheat. Biocatalysis and Agricultural Biotechnology, 6, 152–158.
(13) Maheshwari B. L. and Grewal H. S. 2009. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agricultural Water Management, 96(8), 1229–1236.
(14) Martínez E., Carbonell M. V., Flórez M., Amaya J. M. and Maqueda R. 2009. Germination of tomato seeds (Lycopersicon esculentum L.) under magnetic field. International Agrophys, 23(1), 44–50.
(15) Sudsiri C. J., Jumpa N., Kongchana P. and Ritchie R. J. 2017. Stimulation of oil palm (Elaeis guineensis) seed germination by exposure to electromagnetic fields. Scientia Horticulturae, 220, 66–77.
(16) The European Parliament and the Council of the European Union. 2013. Minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields). [online] Available at: https://eur-lex.europa.eu/eli/dir/2013/35/oj
(17) Vashisth A. and Nagarajan S. 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiol, 167(2), 149–56.
(18) Haq Z. ul., Iqbal M., Jamil Y., Anwar H., Younis A., Arif M., Fareed M. Z. and Hussain F. 2016. Magnetically treated water irrigation effect on turnip seed germination, seedling growth and enzymatic activities. Information Processing in Agriculture, 3(2), 99–106.
(19) Ulgen C., Yildirim A. and Turker A. 2020. Enhancement of Plant Regeneration in Lemon Balm (Melissa officinalis L.) with Different Magnetic Field. Applications International Journal of Secondary Metabolite, 7(2), 99–108.
(20) Ulgen C., Yildirim A. B., Sahin G. and Turker A. U. 2021. Do magnetic field applications affect in vitro regeneration, growth, phenolic profiles, antioxidant potential and defense enzyme activities (SOD, CAT and PAL) in lemon balm (Melissa officinalis L.). Industrial Crops and Products 169(1), https://doi.org/10.1016/j.indcrop.2021.113624
(21) Food and Agriculture Organization of the United Nation 2004 Año Internacional del Arroz 2004: Todo sobre el arroz. [online] Available at: http://www.fao.org/rice2004/es/aboutrice.htm
(22) Doria J. 2010. Generalidades sobre las semillas: su producción, conservación y almacenamiento. Cultivos Tropicales, 31(1), 74-85.
(23) He D. and Yang P. 2013. Proteomics of rice seed germination. Frontiers in Plant Science, 4, 1-9.
(24) Araújo S. de S., Paparella S., Dondi D., Bentivoglio A., Carbonera D. and Balestrazzi A. 2016. Physical methods for seed invigoration: Advantages and challenges in seed technology. Frontiers in Plant Science, 7, 1-12.
(25) Golbaz G. and Kaviani B. 2019. Effect of magnetic field on growth and development parameters of Rudbeckia hirta L. seed in dry and humid conditions. Journal of Ornamental Plants, 9(4), 233–243.
(26) Isaac Alemán E., Barrera Roca L., Fung Boix Y. and Ferrer Dubois A. E. 2020. Efecto del tratamiento electromagnético de frecuencia extremadamente baja en el proceso de germinación de habichuela (Vigna unguiculata L.). Centro Agrícola, 47(3), 51–58.
(27) Radhakrishnan R. 2019. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiology and Molecular Biology of Plants, 25(5), 1107–1119.
(28) Sarraf M., Kataria S., Taimourya H., Santos L. O., Menegatti R. D., Jain M, Ihtisham M. and Liu S. 2020. Magnetic field (MF) applications in plants: An Overview. Plants, 9(9), https://doi.org/10.3390/plants9091139
(29) Vashisth A., Singh R. and Joshi D. K. 2013. Effect of static magnetic field on germination and seedling attributes in tomato (Solanum lycopersicum). Journal of Agricultural Physics, 13(2), 182-185.
(30) Myint T., Chanprasert W. and Srikul S. 2010. Germination of seed of oil palm (Elaeis guineensis Jacq.) as affected by different mechanical scarification methods. Seed Science and Technology, 38(3), 635–645.
(31) Zhou B., Yang L., Chen X., Ye S., Peng Y. and Liang C. 2021. Effect of magnetic water irrigation on the improvement of salinized soil and cotton growth in Xinjiang. Agricultural Water Management, 248(1), https://doi.org/10.1016/j.agwat.2021.106784
(32) Hussain M. S., Dastgeer G., Afzal A. M., Hussain S. and Kanwar R. R. 2020. Eco-friendly magnetic field treatment to enhance wheat yield and seed germination growth. Environmental Nanotechnology, Monitoring & Management, 14, https://doi.org/10.1016/j.enmm.2020.100299
(33) Iqbal M., Haq Z., Malik A., Ayoub Ch. M., Jamil Y. and Nisar J. 2016. Pre-sowing seed magnetic field stimulation: A good option to enhance bitter gourd germination, seedling growth and yield characteristics. Biocatalysis and Agricultural Biotechnology, 5, 30–37.
(34) García F. and Arza L. 2001. Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: Theoretical considerations. Bioelectromagnetics, 22(8), 589–595.
(35) Agustrina R., Nurcahyani E., Pramono E., Listiana I. and Nastiti E. 2016. The influence of magnetic field on the growth of tomato (Lycopersicum esculentum) infected with Fusarium oxysporum. International Series on Interdisciplinary Science and Technology, 1(1), 34–37.
(36) Ijaz B., Jatoi S. A., Ahmad D., Masood M. S. and Siddiqui S. U. 2012. Changes in germination behavior of wheat seeds exposed to magnetic field and magnetically structured water. African Journal of Biotechnology, 11(15), 3575–3585.
(37) Bagherifard A. and Ghasemnezhad A. 2014. Effect of Magnetic Salinated Water on some Morphological and Biochemical Characteristics of Artichoke (Cynara scolymus L.) Leaves. Journal of Medicinal plants and By-product, 3(2), 161–170.
(38) Hasan M. M., Alharby H. F., Hajar A. S., Hakeem K. R. and Alzahrani Y. 2019. The Effect of Magnetized Water on the Growth and Physiological Conditions of Moringa Species under Drought Stress. Polish Journal of Environmental Studies, 28(3), 1145–1155.
(39) Abie S. M., Münch D., Egelandsdal B., Bjerke F., Wergeland I. and Martinsen Ø. G. 2021. Combined 0.2 T static magnetic field and 20 kHz, 2 V/cm square wave electric field do not affect supercooling and freezing time of saline solution and meat samples. Journal of Food Engineering, 311, https://doi.org/10.1016/j.jfoodeng.2021.110710
(40) Li W., Ma H., He R., Ren X. and Zhou C. 2021. Prospects and application of ultrasound and magnetic fields in the fermentation of rare edible fungi. Ultrasonics Sonochemistry, 76, https://doi.org/10.1016/j.ultsonch.2021.105613
(41) Efthimiadou A., Katsenios N., Karkanis A., Papastylianou P., Triantafyllidis V., Travlos I. and Bilalis D. J. 2014. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content. The Scientific World Journal. 2014, https://doi.org/10.1155/2014/369745
(42) Haq Z., Jamil Y., Irum S., Randhawa M., Iqbal M. and Amin N. 2012. Enhancement in Germination, Seedling Growth and Yield of Radish (Raphanus sativus) Using Seed Pre-Sowing Magnetic Field Treatment. Polish Journal of Environmental Studies, 21(2), 369–374.
(43) Iqbal M., Haq Z., Jamil Y. and Ahmad M. R. 2012. Effect of presowing magnetic treatment on properties of pea. Internstionsl Agrophys, 26(1), 25–31.