Diseño bioinspirado en la palma de coco de Panamá para estructuras de absorción de energía
##plugins.themes.bootstrap3.article.main##
Publicado: Mar 28, 2022
Resumen
El diseño bioinspirado se desarrolla conscientemente a través de la investigación, el estudio y el análisis de como los organismos vivos han desarrollado soluciones, superado los retos del mundo natural. De este modo, el campo de los materiales bioinspirados contribuye al diseño de estructuras y a la fabricación de materiales, con el objetivo de combinar estructuras naturales conocidas con un material específico. El objetivo principal de esta investigación es inspirarse en la vegetación de Panamá y América, para identificar, interpretar, extraer, diseñar, verificar y optimizar una estructura para aplicaciones de absorción de energía. En el presente documento se resumen conceptos sobre la bioinspiración, las características comunes en los materiales biológicos según diversos autores en conjunto con diseños de estructuras de pared delgada. Las estructuras, propiedades y anatomía de la palma de coco (Cocos nucifera) son estudiadas como parte de la inspiración, siendo estas plantas parte de la vegetación de Panamá. También se expone el método de bioinspiración y la ruta técnica, que corresponden a la búsqueda de estrategias biológicas en las plantas para gestionar las fuerzas estructurales, análisis de propiedades mecánicas y de las características estructurales de la palma. De esta manera surgen diseños tendientes a la optimización de elementos estructurales, tal y como es el caso de los tubos cilíndricos, mediante métodos de análisis experimental y numérico, los que se pueden llevar a cabo para conocer las ventajas, desventajas y la eficiencia de nuevos diseños.
Palabras clave
Absorción de energía, diseño bioinspirado, estructura de palma de coco, haces vasculares, optimización estructural.Descargas
##plugins.themes.bootstrap3.article.details##
Citas
(2) H. Hashemi Farzaneh, “Bio-inspired design: Ideation in collaboration between mechanical engineers and biologists”, 2016
(3) D. Urdinola Serna, A. H. Valencia Escobar, E. Patiño Mazo, D. A. Torreblanca Díaz, y A. Zuleta Gil, Biomimética y diseño. Bolivia, 2018
(4) A. Alavi Nia y M. Parsapour, “An investigation on the energy absorption characteristics of multi-cell square tubes”, Thin-Walled Struct., vol. 68, pp. 26–34, 2013, doi: 10.1016/j.tws.2013.01.010
(5) F. Baino y M. Ferraris, “Learning from Nature: Using bioinspired approaches and natural materials to make porous bioceramics”, Int. J. Appl. Ceram. Technol., vol. 14, núm. 4, pp. 507–520, 2017, doi: 10.1111/ijac.12677
(6) N. S. Ha y G. Lu, A review of recent research on bio-inspired structures and materials for energy absorption applications, vol. 181. Elsevier Ltd, 2020
(7) F. Libonati y M. J. Buehler, “Advanced Structural Materials by Bioinspiration”, Adv. Eng. Mater., vol. 19, núm. 5, pp. 1–19, 2017, doi: 10.1002/adem.201600787
(8) U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, y R. O. Ritchie, “Bioinspired structural materials”, Nat. Mater., vol. 14, núm. 1, pp. 23–36, 2015, doi: 10.1038/nmat4089
(9) P. Zhang, “Bioinspired Hierarchical Materials and Cellular Structures: Design, Modeling, and 3D Printing”, ene. 2016
(10) P. M. M. Pereira, G. A. Monteiro, y D. M. F. Prazeres, “General aspects of biomimetic materials”, en Biotechnologies and Biomimetics for Civil Engineering, Springer International Publishing, 2015, pp. 57–79
(11) A. Tripathi, “Bioinspired Light-Weight Materials Using Biopolymers: From Synthesis to Application”, North Carolina State University, Raleigh, North Carolina, 2018
(12) B. L. Zhou, “Bio-inspired study of structural materials”, Mater. Sci. Eng. C, vol. 11, núm. 1, pp. 13–18, 2000, doi: 10.1016/S0928-4931(00)00136-3
(13) M. F. Ashby y D. R. H. Jones, Engineering Materials 2, Third Edition., vol. 2. 2005
(14) B. S. Lazarus, A. Velasco-Hogan, T. Gómez-del Río, M. A. Meyers, y I. Jasiuk, “A review of impact resistant biological and bioinspired materials and structures”, J. Mater. Res. Technol., vol. 9, núm. 6, pp. 15705–15738, 2020, doi: 10.1016/j.jmrt.2020.10.062
(15) G. Palomba, T. Hone, D. Taylor, y V. Crupi, “Bio-inspired protective structures for marine applications”, Bioinspiration and Biomimetics, vol. 15, núm. 5, p. 056016, sep. 2020, doi: 10.1088/1748-3190/aba1d1
(16) J. S. Beard, “Climax Vegetation in Tropical America”, Ecology, vol. 25, núm. 2, pp. 127–158, abr. 1944, doi: 10.2307/1930688
(17) G. Vargas Ulate, “La vegetación de América Central: características, transformaciones y protección”, Anu. Estud. Centroam., vol. 23, núm. 1–2, pp. 7–34, 1997, doi: 10.2307/25661291
(18) A. Bernett, “Biomimicry, Bioutilization, Biomorphism - Terrapin Bright Green”, ene. 17, 2015. https://www.terrapinbrightgreen.com/blog/2015/01/biomimicry-bioutilization-biomorphism/
(19) T. A. Owoseni, “Bioinspired Design”, 2013
(20) M. Helms, S. S. Vattam, y A. K. Goel, “Biologically inspired design: process and products”, Des. Stud., vol. 30, núm. 5, pp. 606–622, 2009, doi: 10.1016/j.destud.2009.04.003
(21) S. E. Naleway, M. M. Porter, J. McKittrick, y M. A. Meyers, “Structural Design Elements in Biological Materials: Application to Bioinspiration”, Adv. Mater., vol. 27, núm. 37, pp. 5455–5476, 2015, doi: 10.1002/adma.201502403
(22) H. P. S. Abdul Khalil, I. U. H. Bhat, M. Jawaid, A. Zaidon, D. Hermawan, y Y. S. Hadi, “Bamboo fibre reinforced biocomposites: A review”, Mater. Des., vol. 42, núm. June 2018, pp. 353–368, 2012, doi:
10.1016/j.matdes.2012.06.015
(23) M. Imani, M. Donn, y Z. Balador, “Bio-Inspired Materials: Contribution of Biology to Energy Efficiency of Buildings”, en Handbook of Ecomaterials, Springer International Publishing, 2018, pp. 1–24
(24) M. A. Meyers, J. McKittrick, y P. Y. Chen, “Structural biological materials: Critical mechanics-materials connections”, Science (80-. )., vol. 339, núm. 6121, pp. 773–779, 2013, doi: 10.1126/science.1220854
(25) J. Y. Ooi, T. Schork, H. Rasouli, y S. Malek, “The Role of Defects in 3D Printing of Bio-inspired Cellular Composites”, pp. 3–4, 2007
(26) C. Paulina Valenzuel, A. Cecilia Bustos, J. P. Lasserre, y E. William Gacitúa, “Fracturas en madera de eucalyptus nitens: Efecto de las propiedades mecánicas a nivel ultraestructural y de la anatomía celular”, Maderas Cienc. y Tecnol., vol. 14, núm. 2, pp. 225–238, 2012, doi: 10.4067/S0718-221X2012000200009
(27) M. Presas, J. Y. Pastor, J. Llorca, A. R. De Arellano-López, J. Martínez-Fernández, y R. Sepúlveda, “Microestructura y propiedades mecánicas del SiC biomórfico obtenido a partir de eucalipto”, Bol. la Soc. Esp. Ceram. y Vidr., vol. 44, núm. 6, pp. 363–367, 2005, doi: 10.3989/cyv.2005.v44.i6.337
(28) L. Rossi y F. J. R. Galino, “Estructura de Neumáticos Bio-Inspirada en la Madera de Cactus”, pp. 552–558, 2017, doi: 10.5151/sigradi2017-085
(29) H. H. Tsang, K. M. Tse, K. Y. Chan, G. Lu, y A. K. T. Lau, “Energy absorption of muscle-inspired hierarchical structure: Experimental investigation”, Compos. Struct., vol. 226, núm. May, p. 111250, 2019, doi: 10.1016/j.compstruct.2019.111250
(30) V. Valtchev y S. Mintova, “Bioinspired Porous Materials”, Ordered Porous Solids, pp. 477–499, 2009, doi: 10.1016/B978-0-444-53189-6.00018-4
(31) B. Wang, W. Yang, J. McKittrick, y M. A. Meyers, “Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration”, Prog. Mater. Sci., vol. 76, pp. 229–318, 2016, doi: 10.1016/j.pmatsci.2015.06.001
(32) A. Bührig-Polaczek et al., “Biomimetic cellular metals - Using hierarchical structuring for energy absorption”, Bioinspiration and Biomimetics, vol. 11, núm. 4, pp. 1–20, 2016, doi: 10.1088/1748-3190/11/4/045002
(33) J. Tsenn, J. S. Linsey, y D. A. McAdams, “Development of a Search Tool to Identify Structural Design Principles for Bioinspired Materials Design”, ago. 2014, doi: 10.1115/detc2014-34291
(34) Z. Xin, X. Zhang, Y. Duan, y W. Xu, “Nacre-inspired design of CFRP composite for improved energy absorption properties”, Compos. Struct., vol. 184, pp. 102–109, ene. 2018, doi: 10.1016/j.compstruct.2017.09.075
(35) L. Zorzetto y D. Ruffoni, “Wood-Inspired 3D-Printed Helical Composites with Tunable and Enhanced Mechanical Performance”, Adv. Funct. Mater., vol. 29, núm. 1, p. 1805888, ene. 2019, doi: 10.1002/adfm.201805888
(36) M. Zou, S. Xu, C. Wei, H. Wang, y Z. Liu, “A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo”, Thin-Walled Struct., vol. 101, pp. 222–230, abr. 2016, doi: 10.1016/j.tws.2015.12.023
(37) Z. Feng, Z. Luo, y J. Xiang, “Structural bionic design for thin-walled energy absorber tube and parametric analysis”, 58th AIAA/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. 2017, núm. January, pp. 1–8, 2017, doi: 10.2514/6.2017-1358
(38) J. Feng Ma, W. Yi Chen, L. Zhao, y D. Hai Zhao, “Elastic Buckling of Bionic Cylindrical Shells Based on Bamboo”, J. Bionic Eng., vol. 5, núm. 3, pp. 231–238, sep. 2008, doi: 10.1016/S1672-6529(08)60029-3
(39) B. C. Chen, M. Zou, G. M. Liu, J. F. Song, y H. X. Wang, “Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing”, Int. J. Impact Eng., vol. 115, núm. April 2017, pp. 48–57, 2018, doi: 10.1016/j.ijimpeng.2018.01.005
(40) D. Hu, Y. Wang, B. Song, L. Dang, y Z. Zhang, “Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing”, Compos. Part B Eng., vol. 162, pp. 21–32, abr. 2019, doi: 10.1016/j.compositesb.2018.10.095
(41) H. Yin, Y. Xiao, G. Wen, Q. Qing, y X. Wu, “Crushing analysis and multi-objective optimization design for bionic thin-walled structure”, Mater. Des., vol. 87, pp. 825–834, dic. 2015, doi: 10.1016/j.matdes.2015.08.095
(42) H. Yin, Y. Xiao, G. Wen, N. Gan, C. Chen, y J. Dai, “Multi-objective robust optimization of foam-filled bionic thin-walled structures”, Thin-Walled Struct., vol. 109, pp. 332–343, dic. 2016, doi: 10.1016/j.tws.2016.10.011
(43) H. Oba et al., “State of the World’s Plants”, 2016. [En línea]. Disponible en: https://stateoftheworldsplants.com/report/sotwp_2016
(44) Z. Zhao et al., “Synergistic Effects of Chiral Morphology and Reconfiguration in Cattail Leaves”, J. Bionic Eng., vol. 12, núm. 4, pp. 634–642, oct. 2015, doi: 10.1016/S1672-6529(14)60153-0
(45) T. Xu, N. Liu, Z. Yu, T. Xu, y M. Zou, “Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail and Bamboo”, Appl. Bionics Biomech., vol. 2017, 2017, doi: 10.1155/2017/5894938
(46) Q. Liu, J. Ma, Z. He, Z. Hu, y D. Hui, “Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes”, Compos. Part B Eng., vol. 121, pp. 134–144, jul. 2017, doi: 10.1016/j.compositesb.2017.03.034
(47) J. Xiang, J. Du, D. Li, y F. Scarpa, “Numerical analysis of the impact resistance in aluminum alloy bi-tubular thin-walled structures designs inspired by beetle elytra”, J. Mater. Sci., vol. 52, núm. 22, pp. 13247–13260, nov. 2017, doi: 10.1007/s10853-017-1420-z
(48) P. Hao y J. Du, “Energy absorption characteristics of bio-inspired honeycomb column thin-walled structure under impact loading”, J. Mech. Behav. Biomed. Mater., vol. 79, pp. 301–308, mar. 2018, doi: 10.1016/j.jmbbm.2018.01.001
(49) L. Zhang, Z. Bai, y F. Bai, “Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections”, Thin-Walled Struct., vol. 122, pp. 42–51, ene. 2018, doi: 10.1016/j.tws.2017.10.010
(50) X. Yu, L. Pan, J. Chen, X. Zhang, y P. Wei, “Experimental and numerical study on the energy absorption abilities of trabecular–honeycomb biomimetic structures inspired by beetle elytra”, J. Mater. Sci., vol. 54, núm. 3, pp. 2193–2204, feb. 2019, doi: 10.1007/s10853-018-2958-0
(51) Y. Zhang, X. Xu, J. Wang, T. Chen, y C. H. Wang, “Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load”, Int. J. Mech. Sci., vol. 140, pp. 407–431, may 2018, doi: 10.1016/j.ijmecsci.2018.03.015
(52) C. Y. Wang, Y. Li, W. Z. Zhao, S. C. Zou, G. Zhou, y Y. L. Wang, “Structure design and multi-objective optimization of a novel crash box based on biomimetic structure”, Int. J. Mech. Sci., vol. 138–139, pp. 489–501, abr. 2018, doi: 10.1016/j.ijmecsci.2018.01.032
(53) H. H. Tsang y S. Raza, “Impact energy absorption of bio-inspired tubular sections with structural hierarchy”, Compos. Struct., vol. 195, núm. March, pp. 199–210, 2018, doi: 10.1016/j.compstruct.2018.04.057
(54) S. Liu, Z. Tong, Z. Tang, Y. Liu, y Z. Zhang, “Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads”, Thin-Walled Struct., vol. 88, pp. 70–81, mar. 2015, doi: 10.1016/j.tws.2014.11.006
(55) N. S. Ha, G. Lu, y X. Xiang, “High energy absorption efficiency of thin-walled conical corrugation tubes mimicking coconut tree configuration”, Int. J. Mech. Sci., vol. 148, pp. 409–421, nov. 2018, doi: 10.1016/j.ijmecsci.2018.08.041
(56) C. Hundertmark, R. Tinter, M. Ortelt, y M. J. B. Hauser, “Diatom-inspired Plastic Deformation Elements for Energy Absorption in Automobiles”, J. Bionic Eng., vol. 12, núm. 4, pp. 613–623, oct. 2015, doi: 10.1016/S1672-6529(14)60151-7
(57) L. Fathi, “Structural and mechanical properties of the wood from coconut palms, oil palms and date palms”, p. 248, 2014
(58) K. Wicomb, “Cocos nucifera in cool lighting ”, sep. 25, 2010. https://www.flickr.com/photos/36838058@N03/5208216708/in/album-72157625476346675/
(59) C. R. Clement, D. Zizumbo-Villarreal, C. H. Brown, R. G. Ward, A. Alves-Pereira, y H. C. Harries, “Coconuts in the Americas”, Bot. Rev., vol. 79, núm. 3, pp. 342–370, sep. 2013, doi: 10.1007/s12229-013-9121-z
(60) N. M. Nayar, The Coconut, 1st Edition. 2017
(61) L. Fathi y A. Frühwald, “The role of vascular bundles on the mechanical properties of coconut palm wood”, Wood Mater. Sci. Eng., vol. 9, núm. 4, pp. 214–223, oct. 2014, doi: 10.1080/17480272.2014.887774.
(62) M. Megías, P. Molist, y M. Pombal, “Atlas de Histología Vegetal y Animal. Tejidos vegetales. Conductores”, 2019. https://mmegias.webs.uvigo.es/1-vegetal/guiada_v_conductores.php
(63) M. Viney, “Anatomy: Monocot Stems”, 2008. http://petrifiedwoodmuseum.org/AnatomyMonocotStems.htm
(64) I. López Forniés, “Modelo metodológico de diseño conceptual con enfoque biomimético”, Universidad de Zaragoza, 2012
(65) E. Banwell, “Fiber arrangement is highly efficient : Puntingpole Bamboo - AskNature”, jul. 02, 2020. https://asknature.org/strategy/fiber-arrangement-is-highly-efficient/
(66) AskNature Team, “Rod-like reinforcements provide strength : Plants”, ago. 18, 2016. https://asknature.org/strategy/rod-like-reinforcements-provide-strength/
(67) AskNature Team, “Reinforced fibers provide strength : Plants ”, sep. 14, 2016. https://asknature.org/strategy/reinforced-fibers-provide-strength/
(68) AskNature Team, “Structural composition provides strength in changing conditions : Phyllanthaceae ”, sep. 14, 2016. https://asknature.org/strategy/structural-composition-provides-strength-in-changing-conditions/
(69) C. Zhang, D. A. Mcadams, y J. C. Grunlan, “Nano/Micro-Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures”, Adv. Mater., vol. 28, núm. 30, pp. 6292–6321, ago. 2016, doi: 10.1002/adma.201505555
(70) D. DeLuca, “The power of the Biomimicry Design Spiral”, Biomimicry Institute, jun. 14, 2016. https://biomimicry.org/biomimicry-design-spiral/