Review: Identification and diagnosis of hospital-important microorganisms using MALDITOF and metagenomic NGS.

##plugins.themes.bootstrap3.article.main##

Jorge Santiago Vinda
Marggie Rodríguez
Kimberly Mc Rae-Calvo
Yarebys Arias

Resumen

The identification and diagnosis of pathogenic microorganisms are important for the treatment, management, and prognosis of hospital infections. However, many microorganisms are difficult to identify using conventional diagnostic methods. Advanced techniques such as MALDI-TOF MS and mNGS offer advantages for identifying microorganisms of hospital importance. MALDI-TOF MS is a rapid and precise method that creates a mass spectral fingerprint for microbial identification down to strain levels. This technique is quick, sensitive, and economical, allowing the identification of different types of microorganisms. MALDI-TOF MS can only identify new microorganisms if the spectral database contains peptide mass fingerprints of specific strains, which is a limitation of the technique. Meanwhile, metagenomics allows the analysis of DNA segments from multiple microorganisms within a community, either through amplicon-based or shotgun sequencing. Advances in clinical next-generation metagenomic sequencing (mNGS) increase diagnostic capacity by rapidly detecting rare pathogens and antibiotic resistance genes. This technique presents some limitations in its accuracy and logistical complexity but can perform comprehensive analyses of microbial communities. Both methods complement traditional diagnostic techniques, and their integration into clinical microbiology improves pathogen identification, guides treatment strategies, and supports outbreak investigations. This review summarizes MALDI-TOF MS and metagenomics as alternative methods for identifying and diagnosing microorganisms in hospitals.

Descargas

La descarga de datos todavía no está disponible.

##plugins.themes.bootstrap3.article.details##

Cómo citar
Vinda, J., Rodríguez, M., Ortega, Y., Mc Rae-Calvo, K., & Arias, Y. (2025). Review: Identification and diagnosis of hospital-important microorganisms using MALDITOF and metagenomic NGS. I+D Tecnológico, 21(1). https://doi.org/10.33412/idt.v21.1.4064

Citas

[1]. N.K. Abd El‐Aziz, A.A Gharib, E.A.A. Mohamed, A.H. Hussein (2021, May 1). “Real‐time PCR versus MALDI‐TOF MS and culture‐based techniques for diagnosis of bloodstream and pyogenic infections in humans and animals”. [Online]. Available: https://doi.org/10.1111/jam.14862.
[2]. J. Abián, M. Carrascal, & M. Gay. N2. Introducción a la Espectrometría de Masas para la caracterización de péptidos y proteínas en Proteómica. Córdoba, Universidad de Córdoba (2008).
[3]. M. Alizadeh, L. Yousefi, F. Pakdel, R. Ghotaslou, M. A. Rezaee, E. Khodadadi, M. A. Oskouei, M. H. S. Barhaghi, H. S. Kafil (2021, Mayo 7). “MALDI-TOF Mass Spectroscopy Applications in Clinical Microbiology” [Online]. Available: https://doi.org/10.1155/2021/9928238.
[4]. O. Altun, S. Botero-Kleiven, S. Carlsson, M. Ullberg, V. Özenci (2015, Sept. 10). “Rapid identification of bacteria from positive blood culture bottles by MALDI-TOF MS following short-term incubation on solid media” [Online]. Available: https://doi.org/10.1099/jmm.0.000168.
[5]. J. C. B. Toledo, S. Melgar, E. Oregón, and E. Hernández (2015, Nov. 13). “Reducción del tiempo de respuesta en el diagnóstico microbiológico rutinario de hemocultivos, utilizando la tecnología Maldi-tof” [Online]. Available: http://dx.doi.org/10.36109/rmg.v158i2.150.
[6]. M. Ben Khedher, K. Ghedira, J. M. Rolain, R. Ruimy, O. Croce (2022, Jan. 26). “Application and Challenge of 3rd Generation Sequencing for Clinical Bacterial Studies” [Online]. Available: https://doi.org/10.3390/ijms23031395.
[7]. A. Calderaro, C. Chezzi (2024, Feb. 3). “MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory” [Online]. Available: https://doi.org/10.3390/microorganisms12020322.
[8]. H. Cao, Y. Chen, L. Ge, J. S.-w. Kwong, H. Lai, F. Hu, R. Zhang, H. Zhao, L. Hu, R. He, W. Zheng, J. Zhang (2024, Apr. 3). “An umbrella review of the diagnostic value of next-generation sequencing in infectious diseases” [Online]. Available: https://doi.org/10.1007/s11096-024-01704-2.
[9]. H. G. Chaudhari, S. Prajapati, Z. H. Wardah, G. Raol, V. Prajapati, R. Patel, A. A. Shati, M. Y. Alfaifi, S. E. I. Elbehairi, R. Z. Sayyed (2023, Apr. 23). “Decoding the microbial universe with metagenomics: a brief insight [Online]. Available: https://doi.org/10.3389/fgene.2023.1119740.
[10]. H. Chen, Y. Liang, R. Wang, Y. Wu, X. Zhang, H. Huang, X. Yu, M. Hong, J. Yang, K. Liao, H. Xu, M. Liu, P. Chen, Y. Chen (2023, Jan. 16). “Metagenomic next-generation sequencing for the diagnosis of Pneumocystis jirovecii Pneumonia in critically pediatric patients”[Online]. Available: https://doi.org/10.1186/s12941-023-00555-5.
[11]. J.-Y. Chien, C.-J. Yu, P.-R. Hsueh (2022, Jul. 21). “Utility of Metagenomic Next-Generation Sequencing for Etiological Diagnosis of Patients with Sepsis in Intensive Care Units” [Online]. Available: https://doi.org/10.1128/spectrum.00746-22.
[12]. K. R. Chng, C. Li, D. Bertrand, A. H. Q. Ng, J. S. Kwah, H. M. Low, C. Tong, M. Natrajan, M. H. Zhang, L. Xu, K. K. K. Ko, E. X. P. Ho, T. V. Av-Shalom, J. W. P. Teo, C. C. Khor, S. L. Chen, C. E. Mason, O. T. Ng, K. Marimuthu, B. Ang, N. Nagarajan (2020, Jun. 8). “Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment” [Online]. Available: https://doi.org/10.1038/s41591-020-0894-4.
[13]. I. Comas, I. Cancino-Muñoz, C. Mariner-Llicer, G. A. Goig, P. Ruiz-Hueso, C. Francés-Cuesta, N. García-González, F. González-Candelas (2020, Jan.). “Uso de las tecnologías de secuenciación masiva para el diagnóstico y epidemiología de enfermedades infecciosasUse of next generation sequencing technologies for the diagnosis and epidemiology of infectious diseases” [Online]. Available: https://doi.org/10.1016/j.eimc.2020.02.006.
[14]. M. Cordovana, A. B. Pranada, S. Ambretti, M. Kostrzewa (2019, Sept.). “MALDI-TOF bacterial subtyping to detect antibiotic resistance” [Online]. Available: https://doi.org/10.1016/j.clinms.2019.06.002.
[15]. A. Cuénod, F. Foucault, V. Pflüger, A. Egli (2021, Mar. 15). “Factors Associated With MALDI-TOF Mass Spectral Quality of Species Identification in Clinical Routine Diagnostics” [Online]. Available: https://doi.org/10.3389/fcimb.2021.646648.
[16]. E. De Carolis, A. Vella, L. Vaccaro, R. Torelli, T. Spanu, B. Fiori, B. Posteraro, M. Sanguinetti (2014, Sept. 12). “Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology” [Online]. Available: https://doi.org/10.3855/jidc.3623.
[17]. V. a C. De Abreu, J. Perdigão, and S. Almeida (2021, Jan. 18). “Metagenomic Approaches to Analyze Antimicrobial Resistance: An Overview” [Online]. Available: https://doi.org/10.3389/fgene.2020.575592.
[18]. J. A. Di Conza (2022, Jul.-Sept.). “Aplicaciones de la espectrometría de masas MALDI-TOF en la microbiología clínica” [Online]. Available: https://doi.org/10.1016/j.ram.2022.08.001.
[19]. Z. Diao, D. Han, R. Zhang, J. Li (2022, May). “Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections” [Online]. Available: https://doi.org/10.1016/j.jare.2021.09.012.
[20]. H. Duan, X. Li, A. Mei, P. Li, Y. Liu, X. Li, W. Li, C. Wang, S. Xie (2021, Jan. 13). “The diagnostic value of metagenomic next⁃generation sequencing in infectious diseases” [Online]. Available: https://doi.org/10.1186/s12879-020-05746-5.
[21]. C. K. Fagerquist, B. R. Garbus, W. G. Miller, K. E. Williams, E. Yee, A. H. Bates, S. Boyle, L. A. Harden, M. B. Cooley, R. E. Mandrell (2010, Apr. 1). “Rapid identification of protein biomarkers of Escherichia coli O157:H7 by matrix-assisted laser desorption ionization-time-of-flight-time-of-flight mass spectrometry and top-down proteomics” [Online]. Available: https://doi.org/10.1021/ac902455d.
[22]. J. S. Ghurye, V. Cepeda-Espinoza, M. Pop (2016, Nov. 16). “Metagenomic Assembly: Overview, Challenges and Applications” [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/27698619.
[23]. V. Greco, C. Piras, L. Pieroni, M. Ronci, L. Putignani, P. Roncada, A. Urbani (2018, Aug. 9). “Applications of MALDI-TOF mass spectrometry in clinical proteomics” [Online]. Available: https://doi.org/10.1080/14789450.2018.1505510.

[24]. M. R. Hasan, S. Sundararaju, P. Tang, K.-M. Tsui, A. P. Lopez, M. Janahi, R. Tan, P. Tilley (2020, Jul. 8). “A metagenomics-based diagnostic approach for central nervous system infections in hospital acute care setting” [Online]. Available: https://doi.org/10.1038/s41598-020-68159-z.
[25]. M. Heitz, A. Levrat, V. Lazarevic, O. Barraud, S. Bland, E. Santiago-Allexant, K. Louis, J. Schrenzel, S. Hauser (2023, Nov. 15). “Metagenomics for the microbiological diagnosis of hospital-acquired pneumonia and ventilator-associated pneumonia (HAP/VAP) in intensive care unit (ICU): a proof-of-concept study” [Online]. Available: https://doi.org/10.1186/s12931-023-02597-x.
[26]. H. Huang, J. Shi, M. Zheng, S. Su, W. Chen, J. Ming, T. Ren, D. Qu (2023, May 26). “Pathogen detection in suspected spinal infection: metagenomic next-generation sequencing versus culture” [Online]. Available: https://doi.org/10.1007/s00586-023-07707-3.
[27]. N. Li, Q. Cai, Q. Miao, Z. Song, Y. Fang, B. Hu (2020, Dec. 13). “High-Throughput Metagenomics for Identification of Pathogens in the Clinical Settings” [Online]. Available: https://doi.org/10.1002/smtd.202000792.
[28]. D. Li, W. Gai, J. Zhang, W. Cheng, N. Cui, H. Wang (2022, Feb. 1). “Metagenomic Next-Generation Sequencing for the Microbiological Diagnosis of Abdominal Sepsis Patients” [Online]. Available: https://doi.org/10.3389/fmicb.2022.816631.
[29]. D. Li, W. Gai, J. Zhang, W. Cheng, N. Cui, H. Wang (2022, Dec. 1). “Multisite Metagenomic Next-Generation Sequencing Improved Diagnostic Performance for Sepsis-Associated Lymphopenia Patients” [Online]. Available: https://doi.org/10.1128/spectrum.03532-22.
[30]. X. Li, S. Liang, D. Zhang, M. He, H. Zhang (2023, Apr. 23). “The clinical application of metagenomic next-generation sequencing in sepsis of immunocompromised patients” [Online]. Available: https://doi.org/10.3389/fcimb.2023.1170687.
[31]. M. Litterio, L. Castello, M. E. Venuta, S. Abel, L. Fernández-Canigia, M. C. Legaria, R. Rollet, D. Vaustat, N. Azula, B. Fox, S. Otero, M. L. Maldonado, N. A. Mangieri, M. A. Rossetti, S. C. Predari, D. Cejas, C. Barberis (2024, Feb. 16). “Comparison of two MALDI-TOF MS systems for the identification of clinically relevant anaerobic bacteria in Argentina” [Online]. Available: https://doi.org/10.1016/j.ram.2023.12.001.
[32]. M. Lv, C. Zhu, C. Zhu, J. Yao, L. Xie, C. Zhang, J. Huang, X. Du, G. Feng (2023, Apr. 6). “Clinical values of metagenomic next-generation sequencing in patients with severe pneumonia: a systematic review and meta-analysis” [Online]. Available: https://doi.org/10.3389/fcimb.2023.1106859.
[33]. J.-Y. Mao, D.-K. Li, D. Zhang, Q.-W. Yang, Y. Long, N. Cui (2024, Apr. 17). “Utility of paired plasma and drainage fluid mNGS in diagnosing acute intra-abdominal infections with sepsis” [Online]. Available: https://doi.org/10.1186/s12879-024-09320-1.
[34]. M. Moreno, M. Simian, J. Villarroel, L. Fuenzalida, M. Yarad, A. Soto, V. Silva, X. Pimentel (2019, Dec.). “Primer aislamiento de Candida auris en Chile” [Online]. Available: https://doi.org/10.4067/s0716-10182019000600767.
[35]. M. Oviaño, G. Bou (2018, Nov. 28). “Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Rapid Detection of Antimicrobial Resistance Mechanisms and Beyond” [Online]. Available: https://doi.org/10.1128/cmr.00037-18.
[36]. M. Oviaño, B. Rodríguez-Sánchez1 (2021, Apr.). “MALDI-TOF mass spectrometry in the 21st century clinical microbiology laboratory” [Online]. Available: https://doi.org/10.1016/j.eimc.2020.02.027.
[37]. F. Pang, W. Xu, H. Zhao, S. Chen, Y. Tian, J. Fu, Z. You, P. Song, Q. Xian, Q. Zhao, C. Wang, X. Jia (2024, Jan, 4). “Comprehensive evaluation of plasma microbial cell-free DNA sequencing for predicting bloodstream and local infections in clinical practice: a multicenter retrospective study” [Online]. Available: https://doi.org/10.3389/fcimb.2023.1256099.
[38]. K. To, E. Cornwell, R. Daniel, S. Goonesekera, E. Jauneikaite, V. Chalker, K. Le Doare (2019, Feb. 14). “Evaluation of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for the Identification of Group B Streptococcus” [Online]. Available: https://doi.org/10.1186/s13104-019-4119-1.
[39]. R. Patel (2015, Jan.). “MALDI-TOF MS for the diagnosis of infectious diseases” [Online]. Available: https://doi.org/10.1373/clinchem.2014.221770.
[40]. M. Relloso, J. Nievas, S. Fares Taie, V. Farquharson, M. Mujica, V. Romano, M. Zarate, J. Smayevsky (2015, Apr.-Jun.). “Evaluación de la espectrometría de masas: MALDI-TOF MS para la identificación rápida y confiable de levaduras” [Online]. Available: https://doi.org/10.1016/j.ram.2015.02.004.
[41]. J. Rychert (2019, Jul. 2). “Benefits and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms” [Online]. Available: https://doi.org/10.29245/2689-9981/2019/4.1142.
[42]. S. Rubio, R. Pacheco-Orozco, A. Gómez, S. Perdomo (2020, Apr.). “Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica” [Online]. Available: http://dx.doi.org/10.11144/Javeriana.umed61-2.sngs.
[43]. M. Siller-Ruiz, S. Hernández-Egido, F. Sánchez-Juanes, J. González-Buitrago, J. Muñoz-Bellido (2017, Jan. 17). “Fast methods of fungal and bacterial identification. MALDI-TOF mass spectrometry, chromogenic media” [Online]. Available: https://doi.org/10.1016/j.eimc.2016.12.010.
[44]. H. Shen, T. Liu, M. Shen, Y. Zhang, W. Chen, H. Chen, Y. Wang, J. Liu, J. Tao, L. He, G. Lu, G. Yan (2023, Aug. 15). “Utilizing metagenomic next-generation sequencing for diagnosis and lung microbiome probing of pediatric pneumonia through bronchoalveolar lavage fluid in pediatric intensive care unit: results from a large real-world cohort” [Online]. Available: https://doi.org/10.3389/fcimb.2023.1200806.
[45]. N. Singhal, M. Kumar, P. Kanaujia, J. Virdi (2015, Aug.). “MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis” [Online]. Available: https://doi.org/10.3389/fmicb.2015.00791.
[46]. X. Song, H. Jiang, L. Zong, D. Shi, and H. Zhu (2024, Apr. 22). “The clinical value of mNGS of bronchoalveolar lavage fluid versus traditional microbiological tests for pathogen identification and prognosis of severe pneumonia (NT-BALF):study protocol for a prospective multi-center randomized clinical trial” [Online]. Available: https://doi.org/10.1186/s13063-024-08112-x.
[47]. S. Su, X. Chen, L. Zhou, P. Lin, J. Chen, C. Chen, Q. Wu, J. Ye, Y. Li (2022, Mar. 29). “Diagnostic performance of the metagenomic next-generation sequencing in lung biopsy tissues in patients suspected of having a local pulmonary infection” [Online]. Available: https://doi.org/10.1186/s12890-022-01912-4.
[48]. K. V. Sukhum, L. Diorio‐Toth, and G. Dantas (2019, Jun. 7). “Genomic and metagenomic approaches for predictive surveillance of emerging pathogens and antibiotic resistance” [Online]. Available: https://doi.org/10.1002/cpt.1535.
[49]. B. B. Surányi, B. Zwirzitz, C. Mohácsi-Farkas, T. Engelhardt, and K. J. Domig (2023, Jan. 21). “Comparing the efficacy of MALDI-TOF MS and Sequencing-Based Identification Techniques (SANGER and NGS) to monitor the microbial community of irrigation water” [Online]. Available: https://doi.org/10.3390/microorganisms11020287.
[50]. M. Thoendel, P. Jeraldo, K. Greenwood-Quaintance, J. Yao, N. Chia, A. Hanssen, M. Abdel, R. Patel (2018, Oct. 15). “Identification of Prosthetic Joint Infection Pathogens Using a Shotgun Metagenomics Approach” [Online]. Available: https://doi.org/10.1093/cid/ciy303.
[51]. Y. Tian, R. Gao, Y. Wang, Y. Zhou, S. Xu, Y. Duan, W. Lv, S. Wang, M. Hou, Y. Chen, F. Li, W. Gao, L. Zhang, J. Zhou (2023, Dec. 21). “Economic impact of metagenomic next-generation sequencing versus traditional bacterial culture for postoperative central nervous system infections using a decision analysis mode: study protocol for a randomized controlled trial” [Online]. Available: https://doi.org/10.1128/msystems.00581-23.
[52]. E. Torres-Sangiao, C. L. Rodriguez, and C. García-Riestra (2021, Jul. 20). “Application and Perspectives of MALDI–TOF mass spectrometry in clinical microbiology laboratories” [Online]. Available: https://doi.org/10.3390/microorganisms9071539.
[53]. E. L. van Dijk, D. Naquin, K. Gorrichon, Y. Jaszczyszyn, R. Ouazahrou, C. Thermes, C. Hernandez (2023, May 23). “Genomics in the long-read sequencing era” [Online]. Available: https://doi.org/10.1016/j.tig.2023.04.006.
[54]. M. Verma, S. Kulshrestha, and A. Puri (2017). “Genome sequencing” [Online]. Available: https://doi.org/10.1007/978-1-4939-6622-6_1.
[55]. M. R. Elie, N. Reisdorph, Y. Nkrumah-Elie (2017, Oct.). “Systems Biology Approaches to asthma management” [Online]. Available: http://dx.doi.org/10.1016/B978-0-323-48552-4.00014-7.
[56]. J. Yu, L. Zhang, D. Gao, J. Wang, Y. Li, and N. Sun (2024, Jan. 24). “Comparison of metagenomic next-generation sequencing and blood culture for diagnosis of bloodstream infections” [Online]. Available: https://doi.org/10.3389/fcimb.2024.1338861.
[57]. D. Zhang, X. Li, Y. Wang, Y. Zhao, H. Zhang (2024, Apr.). “The clinical importance of metagenomic next-generation sequencing in detecting disease-causing microorganisms in cases of sepsis acquired in the community or hospital setting” [Online]. Available: https://doi.org/10.3389/fmicb.2024.1384166.
[58]. M. Y. Ashfaq, D. A. Da'na, M. A. Al-Ghouti (2021, Dec. 24). “Application of MALDI-TOF MS for identification of environmental bacteria: A review” [Online]. Available: https://doi.org/10.1016/j.jenvman.2021.114359.
[59]. E.-J. Yoon, S. H. Jeong (2021, Aug. 14). “MALDI-TOF Mass Spectrometry Technology as a Tool for the Rapid Diagnosis of Antimicrobial Resistance in Bacteria” [Online]. Available: https://doi.org/10.3390/antibiotics10080982.
[60]. N. Zhao, J. Cao, J. Xu, B. Liu, B. Liu, D. Chen, B. Xia, L. Chen, W. Zhang, Y. Zhang, X. Zhang, Z. Duan, K. Wang, F. Xie, K. Xiao, W. Yan, L. Xie, H. Zhou, J. Wang (2021, Dec). “Targeting RNA with Next- and Third-Generation Sequencing Improves Pathogen Identification in Clinical Samples” [Online]. Available: https://doi.org/10.1002/advs.202102593.
[61]. C. Zhang, T. Liu, Y. Wang, W. Chen, J. Liu, J. Tao, Z. Zhang, X. Zhu, Z. Zhang, M. Ming, M. Wang, G. Lu, G. Yan (2023, Mar.). “Metagenomic next-generation sequencing of bronchoalveolar lavage fluid from children with severe pneumonia in pediatric intensive care unit” [Online]. Available: https://doi.org/10.3389/fcimb.2023.1082925.
[62]. B. Hanson, Y. Zhou, E. J. Bautista, B. Urch, M. Speck, F. Silverman, M. Muilenberg, W. Phipatanakul, G. Weinstock, E. Sodergren, D. R. Gold, J. E. Sordillo (2016, May 23). “Characterization of the bacterial and fungal microbiome in indoor dust and outdoor air samples: a pilot study” [Online]. Available: https://doi.org/10.1039/c5em00639b.
[63]. J. P. Dekker, J. A. Branda (2011, Jun.15). “MALDI-TOF Mass Spectrometry in the Clinical Microbiology Laboratory” [Online]. Available: https://doi.org/10.1016/j.clinmicnews.2011.05.003.
[64]. A. Croxatto, G. Prod'hom, G. Greub (2012, Mar. 1). “Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology” [Online]. Available: https://doi.org/10.1111/j.1574-6976.2011.00298.x.
[65]. A. Bizzini, K. Jaton, D. Romo, J. Bille, G. Prod'hom, G. Greub (2011, Feb.). “Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry as an Alternative to 16S rRNA Gene Sequencing for Identification of Difficult-To-Identify Bacterial Strains” [Online]. Available: https://doi.org/10.1128/jcm.01463-10.
[66]. S Emonet, H N Shah, A Cherkaoui, J Schrenzel (2010, Nov.). “Application and use of various mass spectrometry methods in clinical microbiology” [Online]. Available: https://doi.org/10.1111/j.1469-0691.2010.03368.x.
[67]. R. Giebel, C. Worden, S. M. Rust, G. T. Kleinheinz, M Robbins, T R Sandrin (2010, Feb. 20). “Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges” [Online]. Available: https://doi.org/10.1016/s0065-2164(10)71006-6.
[68]. D. Uribe Pérez (2009, Dec.). “Metagenómica ¿Una oportunidad para el estudio de la diversidad microbiana en Colombia?” [Online]. Available: https://doaj.org/article/e8740906b1f0473bbc2148cf7662d625.
[69]. J. Carrazco, P. Millas, C. Santelices, J. Castro (2020). “Identificación de Microoganismos. Conformación de colecciones de cultivos microbianos” [Online]. Available: https://hdl.handle.net/20.500.14001/6945.
[70]. K. Y. Choi, T. K. Lee, W. J. Sul (2015, Jan. 9). “Metagenomic Analysis of Chicken Gut Microbiota for Improving Metabolism and Health of Chickens — A Review” [Online]. Available: https://doi.org/10.5713/ajas.15.0026.
[71]. L. Oberauner-Wappis, A. Mahnert, A. Bragina, G. Berg (2015,Jan.). “Complex Indoor Communities: Bacterial Life Under Extreme Conditions in Clean Rooms and Intensive Care Units” [Online]. Available: http://dx.doi.org/10.1007/978-1-4899-7475-4_322.
[72]. Zhang L, Chen F, Zeng Z, Xu M, Sun F, Yang L, Bi X, Lin Y, Gao Y, Hao H, Yi W, Li M, Xie Y. Advances in Metagenomics and Its Application in Environmental Microorganisms. Front Microbiol. 2021 Dec 17 ;12 :766364. Doi : 10.3389/fmicb.2021.766364. PMID : 34975791 ; PMCID : PMC8719654.
[73]. H. Yang, N. Xu, M. Yan, L. Yang, S. Wen, S. Wang, C. Qu, K. Xu, X. Yang, G. Wang (2024, Mar. 24). “Comparison of metagenomic next-generation sequencing and conventional culture for the diagnostic performance in febrile patients with suspected infections” [Online]. Available: https://doi.org/10.1186/s12879-024-09236-w.