Analysis of SBR polymer adapted to an automobile damping system


Adin Gil
Antonio Huang
Luz Jiménez
Paul Madrid
Fatima Reyna
Delkis Vergara
Enviado: Jul 29, 2016
Publicado: Dec 1, 2015


To improve the reliability of the damping system of an automobile we investigated a new design which adds a rubber bushing and spring in parallel with the existing spring. This model provides acceptable stiffness values regarding the car suspension.
Simulation shows that this model adds a resistance feature to the dynamic constant changes.

Palabras clave

Viscoelastic material, damping system, natural frequency, styrene butadiene


La descarga de datos todavía no está disponible.


Cómo citar
Gil, A., Huang, A., Jiménez, L., Madrid, P., Reyna, F., & Vergara, D. (2015). Analysis of SBR polymer adapted to an automobile damping system. Revista De Iniciación Científica, 1(2), 54-58. Recuperado a partir de
Biografía del autor/a

Adin Gil, Universidad Tecnológica de Panamá

Naval Engineering

Antonio Huang, Universidad Tecnológica de Panamá

Naval Engineering

Luz Jiménez, Universidad Tecnológica de Panamá

Naval Engineering

Paul Madrid, Universidad Tecnológica de Panamá

Naval Engineering

Fatima Reyna, Universidad Tecnológica de Panamá

Naval Engineering

Delkis Vergara, Universidad Tecnológica de Panamá

Naval Engineering


(1) Víctor Chacón Hernando, “Diseño de una suspensión para un vehículo automóvil basada en amortiguadores magnetoreológicos”, Undergraduate Thesis, Universidad Carlos III de Madrid, Madrid, 2009.

(2) Fereshteh Motiee, Saeed Taghvaei-Ganjali and Mercedeh Malekzadeh, “Investigation of correlation between rheological properties of rubber compounds based on natural rubber/styrene-butadiene rubber with their thermal behaviors”, International Journal of Industrial Chemistry, 10.1186/2228-5547-4-16, 20132010.

(3) A. Mujtaba , M. Keller , S. Ilisch , H.-J. Radusch , T. ThurnAlbrecht, K. Saalwächter , and M. Beiner “Mechanical Properties and Cross-Link Density of Styrene–Butadiene Model Composites Containing Fillers with Bimodal Particle Size Distribution”, Walter-Hülse-Str. 1, 06120 Halle (Saale), Germany, 2012.

(4) Fórmula Student, “UPM Racing”, Technical University of Madrid. Proptype: UPM 08. Available on:

(5) Öhlins, USA. Review day: June 3, 2015. Avaible on:

(6) General Motors, “Fuelle de Dirección”, MAPCO 17751, 90090811.

(7) Fredrik Karlsson and Anders Persson, “Modelling nonlinear dynamics of rubber bushings-Parameters Identification and Validation”, Master Dissertation, Lund Universitty, Division of Structural Mechanics, Sweeden, 2003.

(8) A.K. Olsson and P-E Austrell, “A fitting Procedure for viscoelasticelastoplastic Material Models”, Proceedings of The Second European Conference on Constitutive Models for Rubber, Germany, 200.

(9) Zhang Lijun, Yu Zengliang and Yu Zhuoping, “Novel Empirical Model Of Rubber Bushing in Automotive Sus-pension System”, College of Automotive Engineering, Tongji University Cao`an road, 4800, 201804, Shangai, China.

(10) C. Bocheński, Z. Lozia, J. Mikołajczuk, “Test of objective evaluation of build in vehicle shock absorber research method recommended by EUSAMA association”, Diagnostyka Maszyn Roboczych, Borówno, 1999.

(11) National Emission Standards for Hazardous Air Pollutants: “Rubber Tire Manufacturing – Final Rule”, Federal Register. 40 CFR Part 63. Vol. 67, No. 161, 2002. pp. 45588.

(12) “Development of Emission Factors for the Rubber Manu-facturing Industry”, Volume 4: Emission Factor Application Manual. Final Report, prepared for the Rubber Manufacturers Association (RMA) by TRC Environmental Corporation, Lowell, MA, 1995.

(13) J.D. Ulmer, “Strain Dependence of Dynamic Mechanical Properties of Carbon-Black-Filled Rubber Compounds, Rubber Chemistry and Technology, Vol. 69.

(14) S. Vieweg ET. AL, “Frecuency and Temperature Depend-ence on the Small-Strain Behavior of CarbonBlack-Filled Vulcanizates, Polym”, Networks Blends, 1995