Efecto de la corriente y longitud de arco en soldadura por arco eléctrico en CO2 mediante simulación numérica

##plugins.themes.bootstrap3.article.main##

José Alfredo Delgado
Patricio Méndez
Marco Aurelio Ramírez Argáez
Enviado: Dec 11, 2018
Publicado: Dec 11, 2018

Resumen

Se desarrolló un modelo matemático 2D para un proceso de soldadura por arco eléctrico en CO2. Se presentan resultados de simulaciones computacionales basadas en los principios de conservación de masa, cantidad de movimiento y leyes de Maxwell, resueltas simultáneamente con la ayuda del software comercial PHOENICS. El modelo predice las propiedades eléctricas de la columna del arco, los patrones de flujo, contornos de temperatura, flujo de calor y potencial eléctrico, al variar la longitud de arco y la corriente aplicada. Al incrementar la corriente, el jet del arco es más intenso, el arco es más caliente y transfiere más calor a la pieza de trabajo, mientras que al incrementar la longitud del arco la temperatura máxima, la velocidad máxima y el flujo de calor no cambian aunque un arco corto focaliza más el calor que un arco largo.

Palabras clave

arco eléctrico, trasferencia de calor, flujo de fluidos, modelado matemático.

Descargas

La descarga de datos todavía no está disponible.

##plugins.themes.bootstrap3.article.details##

Cómo citar
Delgado, J., Méndez, P., & Ramírez Argáez, M. (2018). Efecto de la corriente y longitud de arco en soldadura por arco eléctrico en CO2 mediante simulación numérica. Revista Prisma Tecnológico, 9(1), 26-30. https://doi.org/10.33412/pri.v9.1.2064
Biografía del autor/a

José Alfredo Delgado, Universidad Nacional Autónoma de México

Departamento de Metalurgia, Facultad de Química

Patricio Méndez, University of Alberta, Edmonton, AB T6G 2V4

Department of Chemical and Materials Engineering

Marco Aurelio Ramírez Argáez, Universidad Nacional Autónoma de México

Departamento de Metalurgia, Facultad de Química

Citas

[1] Maecker, H., Plasmaströmungen in Lichtbögen infolge eigenmagnetischer Kompression. Zeitschrift für Physik, 1955. 141(1-2): p. 198-216.
[2] Lowke, J.J. and H.C. Ludwig, A simple model for high-current arcs stabilized by forced convection. Journal of Applied Physics, 1975. 46(8): p. 3352-3360.
[3] Ramakrishnan, S. and B. Nuon, Prediction of properties of free burning welding arc columns. Journal of Physics D: Applied Physics, 1980. 13(10): p. 1845-1853.
[4] Allum, C.J., Gas flow in the column of a TIG welding arc. Journal of Physics D: Applied Physics, 1981. 14(6): p. 1041-1059.
[5] Hsu, K.C., K. Etemadi, and E. Pfender, Study of the free-burning high-intensity argon arc. Journal of Applied Physics, 1983. 54(3): p. 1293-1301.
[6] McKelliget, J. and J. Szekely, Heat transfer and fluid flow in the welding arc. Metallurgical Transactions A, 1986. 17(7): p. 1139-1148.
[7] Kim, W.H., H.G. Fan, and S.J. Na, A mathematical model of gas tungsten arc welding considering the cathode and the free surface of the weld pool. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1997. 28(4): p. 679-686.
[8] Nestor, O.H., Heat Intensity and Current Density Distributions at the Anode of High Current, Inert Gas Arcs. Journal of Applied Physics, 1962. 33(5): p. 1638-1648.
[9] Mougenot, J., et al., Plasma-weld pool interaction in tungsten inert-gas configuration. Journal of Physics D: Applied Physics, 2013. 46(13).
[10] Wang, X., et al., Investigation of heat transfer and fluid flow in activating TIG welding by numerical modeling. Applied Thermal Engineering, 2017. 113: p. 27-35.
[11] Tanaka, M., et al., Influence of shielding gas composition on arc properties in TIG welding. Science and Technology of Welding and Joining, 2008. 13(3): p. 225-231.
[12] Ramírez-Argáez, M.A., C. González-Rivera, and G. Trápaga, Mathematical modeling of high intensity electric arcs burning in different atmospheres. ISIJ International, 2009. 49(6): p. 796-803.
[13] Murphy, A.B., et al., A computational investigation of the effectiveness of different shielding gas mixtures for arc welding. Journal of Physics D: Applied Physics, 2009. 42(11).
[14] Heberlein, J., J. Mentel, and E. Pfender, The anode region of electric arcs: A survey. Journal of Physics D: Applied Physics, 2010. 43(2).
[15] Javidi Shirvan, A., I. Choquet, and H. Nilsson, Effect of cathode model on arc attachment for short high-intensity arc on a refractory cathode. Journal of Physics D: Applied Physics, 2016. 49(48).
[16] Ramírez, M.A., G. Trapaga, and J. McKelliget, A comparison between two different numerical formulations of welding arc simulation. Modelling and Simulation in Materials Science and Engineering, 2003. 11(4): p. 675-695.
[17] Boulos, M.I., P. Fauchats, and E. Pfender, Thermal plasmas - Fundamentals and applications. Vol. 1. 1994, New York: Plenum press. 452.
[18] Ramírez, M., Mathematical Modeling of D.C. Electric Arc Furnace Operations. 2000, Ph.D. Thesis, Massachusetts Institute of Technology: Boston, USA.