Humedales artificiales flotantes y su valor paisajisto en ríos urbanos - Ciudad de Panamá
##plugins.themes.bootstrap3.article.main##
Publicado: Feb 23, 2022
Resumen
Los humedales artificiales son tecnologías que aprovechan la capacidad de depuración de las plantas y su capacidad para mejorar la calidad y el estado de los cuerpos de agua, conocida como fitorremediación. Las aplicaciones en el tratamiento de agua de distintas procedencias son amplias. Dentro de esta gama de aplicaciones destacan los Humedales Artificiales Flotantes (HAF) como soluciones innovadoras con un potencial de tratamiento mayor al de otros métodos convencionales de fitorremediación. Esta reseña presenta las posibles ventajas de su implementación en ríos urbanos, especialmente en la ciudad de Panama. Los HAF como micro ecosistemas se recomiendan como alternativa verde para el tratamiento de estos ríos con la consecuente mejora de la calidad de vida de los habitantes y el entorno.
Palabras clave
contaminación, fitorremediación, humedal artificial flotante, paisajismo, aguas superficialesDescargas
##plugins.themes.bootstrap3.article.details##
Citas
(2) A. website, “AQUASTAT - FAO’s Information System on Water and Agriculture,” Food and Agriculture Organization of the United Nations (FAO). 2016.
(3) UNESCO, Aguas residuales: El recurso desaprovechado. 2017.
(4) Autoridad Nacional del Ambiente, “Informe de Monitoreo de la Calidad del Agua en las Cuencas Hidrográficas de Panamá: Compendio de Resultados Años 2002-2008.” p. 636, 2009.
(5) U. Molina, “http://impresa.prensa.com/panorama/Verificaran-calidad-rios-quebradas_0_4723777597.html,” La Prensa online, Panama, 2017.
(6) N. Skoulikidis, Th, N. Pavlineri, and V. A. Tsihrintzis, “Constructed Floating Wetlands: state-of-the-art and pottential application in a Greek fluvial ecosystem,” Πανελλήνιο Συμπόσιο Ωκεανογραφίας & Αλιείας, pp. 2010–2013, 2015.
(7) B. McAndrew, C. Ahn, and J. Spooner, “Nitrogen and sediment capture of a floating treatment wetland on an urban stormwater retention pond-The case of the rain project,” Sustain., vol. 8, no. 10, 2016.
(8) S. Salimi and M. Scholz, “Impact of future climate scenarios on peatland and constructed wetland water quality: A mesocosm experiment within climate chambers,” J. Environ. Manage., vol. 289, p. 112459, Jul. 2021.
(9) M. Licata, M. Cristina Gennaro, T. I. Tuttolomondo, C. Leto, and S. La Bella, “Research focusing on plant performance in constructed wetlands and agronomic application of treated wastewater – A set of experimental studies in Sicily (Italy),” 2019.
(10) T. Saeed, B. Paul, R. Afrin, A. Al-Muyeed, and G. Sun, “Floating constructed wetland for the treatment of polluted river water: A pilot scale study on seasonal variation and shock load,” Chem. Eng. J., vol. 287, pp. 62–73, 2016.
(11) L. Zhu, Z. Li, and T. Ketola, “Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in chinas rural area,” Ecol. Eng., vol. 37, no. 10, pp. 1460–1466, 2011.
(12) D. Q. Zhang, K. B. S. N. Jinadasa, R. M. Gersberg, Y. Liu, W. J. Ng, and S. K. Tan, “Application of constructed wetlands for wastewater treatment in developing countries - A review of recent developments (2000-2013),” Journal of Environmental Management, vol. 141. Academic Press, pp. 116–131, Aug-2014.
(13) M. Wang, D. Q. Zhang, J. W. Dong, and S. K. Tan, “Constructed wetlands for wastewater treatment in cold climate — A review,” Journal of Environmental Sciences (China), vol. 57. Chinese Academy of Sciences, pp. 293–311, Jul-2017.
(14) ETESA, “Pronóstico de Precipitación para el mes de noviembre Monitoreo de los Fenómenos de Varaivilidad Climática.” Panamá, p. 12, 2018.
(15) Programa Saneamiento de Panamá, “Planta de Tratamiento de Aguas Residuales de la Ciudad de Panamá.” [Online]. Available: https://saneamientodepanama.gob.pa/planta-de-tratamiento-de-aguas-residuales-de-la-ciudad-de-panama/.
(16) M. M. M. José R. Fábrega D. and y P. L. Argentina Ying, Casilda Saavedra, Berta Olmedo, Aguas Urbanas. Panamá. 2015.
(17) Ministerio de Ambiente, Informe de la calidad del agua en las cuencas hidrograficas de Panama. 2009-2012. 2019.
(18) D. MacDonald, C. Walker, T. Lucke, R. Flipp, K. Covey, and P. Shadforth, “Floating wetland treatment systems in residential development: assessing the benefits for residents, local authorities, and developers,” Strat. Sociol. économiques/Economic Sociol. Asp., pp. 1–4, 2016.
(19) J. Auchterlonie, C. L. Eden, and C. Sheridan, “The phytoremediation potential of water hyacinth: A case study from Hartbeespoort Dam, South Africa,” South African J. Chem. Eng., vol. 37, pp. 31–36, Jul. 2021.
(20) R. A. Siahouei, M. Zaeimdar, R. Moogouei, and S. A. Jozi, “Potential of cyperus alternifolius, amaranthus retroflexus, closia cristata and bambusa vulgaris to phytoremediate emerging contaminants and phytodesalination; insight to floating beds technology,” Casp. J. Environ. Sci., vol. 18, no. 4, pp. 309–317, 2020.
(21) H. M. Mustafa and G. Hayder, “Cultivation of S. molesta plants for phytoremediation of secondary treated domestic wastewater,” Ain Shams Eng. J., Apr. 2021.
(22) V. Kumar, J. Singh, A. Saini, and P. Kumar, “Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.),” Environ. Sustain., vol. 2, no. 1, pp. 55–65, 2019.
(23) F. V. de Campos, J. A. de Oliveira, A. A. da Silva, C. Ribeiro, and F. dos Santos Farnese, “Phytoremediation of arsenite-contaminated environments: is Pistia stratiotes L. a useful tool?,” Ecol. Indic., vol. 104, no. May, pp. 794–801, 2019.
(24) H. M. Mustafa and G. Hayder, “Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article,” Ain Shams Engineering Journal, vol. 12, no. 1. Ain Shams University, pp. 355–365, 01-Mar-2021.
(25) X. Huang, F. Zhao, G. Yu, C. Song, Z. Geng, and P. Zhuang, “Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Phragmites australis Artificial Floating Wetlands,” Biomed Res. Int., vol. 2017, pp. 1–10, 2017.
(26) R. Osama, H. M. Awad, S. Zha, F. Meng, and A. Tawfik, “Greenhouse gases emissions from duckweed pond system treating polyester resin wastewater containing 1,4-dioxane and heavy metals,” Ecotoxicol. Environ. Saf., vol. 207, p. 111253, Jan. 2021.
(27) P. Schwammberger, C. Walker, and T. Lucke, “Using floating wetland treatment systems to reduce stormwater pollution from urban developments,” Int. J. GEOMATE, vol. 12, no. 31, pp. 45–50, 2017.
(28) A. Ijaz, G. Shabir, Q. M. Khan, and M. Afzal, “Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands,” Ecol. Eng., vol. 84, no. August, pp. 58–66, 2015.
(29) H. Saleem, M. Arslan, K. Rehman, R. Tahseen, and M. Afzal, “Phragmites australis — a helophytic grass — can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland,” Saudi J. Biol. Sci., vol. 26, no. 6, pp. 1179–1186, Sep. 2019.
(30) K. Rehman, A. Ijaz, M. Arslan, and M. Afzal, “Floating treatment wetlands as biological buoyant filters for wastewater reclamation,” Int. J. Phytoremediation, vol. 21, no. 13, pp. 1273–1289, 2019.
(31) H. Wu et al., “A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation,” Bioresour. Technol., vol. 175, pp. 594–601, 2015.
(32) M. E. Haro González and N. O. Aponte Hernández, “Evaluación de un humedal artificial como tratamiento de agua residual en un asentamiento irregular,” Universidad Nacional Autónoma de México, 2010.
(33) Gaceta Oficial Asamblea Legislativa, Decreto Ejecutivo No. 75 de 4 de junio de 2008. Panamá: Gaceta Oficial de la Republica de Panama, 2008, p. https://www.gacetaoficial.gob.pa/pdfTemp/26078/116.