Ganadería de precisión, una revisión a los avances dentro de la avicultura enfocados a la crianza de pollos de engorde.
##plugins.themes.bootstrap3.article.main##
Publicado: Feb 3, 2023
Resumen
La producción avícola es una de las industrias con mejor desarrollo dentro del sistema agropecuario panameño, sin embargo, para los próximos años se espera un crecimiento en la demanda de alimentos causado por el crecimiento de la población. Esto ha planteado soluciones como fomentar la aparición de un mayor número de productores y potenciar la producción animal intensiva, ante esta problemática ha surgido un nuevo campo de investigación denominado Ganadería de precisión (PLF), este es definido como la capacidad de monitorizar y de dar seguimiento en tiempo real al bienestar, producción, reproducción, impacto ambiental y salud del ganado, empleando nuevas tecnologías en Inteligencia artificial, automatización, internet de las cosas y sistemas de información. Este artículo tiene por objetivo ser una revisión sobre los fundamentos de la ganadería de precisión en la crianza de pollos de engorde, reuniendo trabajos de actualidad y sus tendencias de trabajo, desde bases de investigación bibliográficas, con miras a la adopción de este campo en los proyectos futuros dentro de Panamá. Como resultado de esta revisión se encontró que los países europeos como Bélgica, Países Bajos, Reino Unido e Italia tienen la mayor cantidad de investigadores y trabajos relacionados con esta rama, siendo proyectos basados en sensores, machine learning, visión artificial y análisis del sonido las actuales tendencias de investigación, también se encontró que aún se discuten dilemas éticos relacionados con el cuidado y bienestar animal dentro de este campo.
Palabras clave
automatización, bienestar animal, ética, ganadería de precisión, gestión, machine learning, pollos de engorde, sensores, visión artificialDescargas
##plugins.themes.bootstrap3.article.details##
Citas
(2) Organización de las Naciones Unidas para la Alimentación y la Agricultura, “FAO - Noticias: 2050: un tercio más de bocas que alimentar.” https://www.fao.org/news/story/es/item/35675/icode/ (accessed Nov. 29, 2021).
(3) M. M. Rojas-Downing, A. P. Nejadhashemi, T. Harrigan, and S. A. Woznicki, “Climate change and livestock: Impacts, adaptation, and mitigation,” Clim. Risk Manag., vol. 16, pp. 145–163, Jan. 2017, doi: 10.1016/J.CRM.2017.02.001.
(4) S. Neethirajan, “The role of sensors, big data and machine learning in modern animal farming,” Sens. Bio-Sensing Res., vol. 29, p. 100367, Aug. 2020, doi: 10.1016/J.SBSR.2020.100367.
(5) T. Van Hertem et al., “Appropriate data visualisation is key to Precision Livestock Farming acceptance,” Comput. Electron. Agric., vol. 138, pp. 1–10, Jun. 2017, doi: 10.1016/J.COMPAG.2017.04.003.
(6) T. Norton, C. Chen, M. L. V. Larsen, and D. Berckmans, “Review: Precision livestock farming: building ‘digital representations’ to bring the animals closer to the farmer,” Animal, vol. 13, no. 12, pp. 3009–3017, Jan. 2019, doi: 10.1017/S175173111900199X.
(7) I. Fontana, E. Tullo, A. Butterworth, and M. Guarino, “An innovative approach to predict the growth in intensive poultry farming,” Comput. Electron. Agric., vol. 119, pp. 178–183, Nov. 2015, doi: 10.1016/J.COMPAG.2015.10.001.
(8) P. Stevenson, “Precision livestock farming: could it drive the livestock sector in the wrong direction,” Compassion World Farming. Recuper. a partir https//www. ciwf. org. uk/media/7431928/plf-could-it-drive-the-livestock-sector-in-the-wrong-direction. pdf, 2017, [Online]. Available: https://www.ciwf.org.uk/media/7431928/plf-could-it-drive-the-livestock-sector-in-the-wrong-direction.pdf.
(9) F. Borgonovo, V. Ferrante, G. Grilli, R. Pascuzzo, S. Vantini, and M. Guarino, “A Data-Driven Prediction Method for an Early Warning of Coccidiosis in Intensive Livestock Systems: A Preliminary Study,” Anim. 2020, Vol. 10, Page 747, vol. 10, no. 4, p. 747, Apr. 2020, doi: 10.3390/ANI10040747.
(10) D. Berckmans, “General introduction to precision livestock farming,” Anim. Front., vol. 7, no. 1, pp. 6–11, Jan. 2017, doi: 10.2527/AF.2017.0102.
(11) Comisión Europea, “Bright Farm de ganadería de precisión | Proyecto EU-PLF | Hoja de datos | FP7 | CORDIS | Comisión Europea.” https://cordis.europa.eu/project/id/311825/es (accessed Dec. 02, 2021).
(12) I. Halachmi, “Precision livestock farming applications,” Precis. Livest. farming Appl., May 2015, doi: 10.3920/978-90-8686-815-5.
(13) M. Egan, “Proceedings of the Precision Livestock Farming ’19 | EA-PLF,” in Papers presented at the 9th European Conference on Precision Livestock Farming, Aug. 2019, pp. 1–924, Accessed: Dec. 02, 2021. [Online]. Available: https://www.eaplf.eu/2021/07/proceedings-of-the-precision-livestock-farming-19/.
(14) D. Goo, J. H. Kim, G. H. Park, J. B. D. Reyes, and D. Y. Kil, “Effect of Heat Stress and Stocking Density on Growth Performance, Breast Meat Quality, and Intestinal Barrier Function in Broiler Chickens,” Anim. 2019, Vol. 9, Page 107, vol. 9, no. 3, p. 107, Mar. 2019, doi: 10.3390/ANI9030107.
(15) M. W. Dunlop, P. J. Blackall, and R. M. Stuetz, “Odour emissions from poultry litter – A review litter properties, odour formation and odorant emissions from porous materials,” J. Environ. Manage., vol. 177, pp. 306–319, Jul. 2016, doi: 10.1016/J.JENVMAN.2016.04.009.
(16) In-Bok Lee, Byoeng-Ki You, Kyu-Hong Choi, Jong-Gil Jeun, and Gyeong-Won Kim, “Study of Internal climate of naturally and Mechanically Ventilated Broiler Houses,” Nov. 2013, doi: 10.13031/2013.13871.
(17) I. Werkheiser, “Precision Livestock Farming and Farmers’ Duties to Livestock,” J. Agric. Environ. Ethics 2018 312, vol. 31, no. 2, pp. 181–195, Feb. 2018, doi: 10.1007/S10806-018-9720-0.
(18) D. Berckmans, “Automatic on-line monitoring of animals by precision livestock farming,” Livest. Prod. Soc., 2006, doi: 10.3920/978-90-8686-567-3.
(19) T. M. Banhazi et al., “Precision Livestock Farming: An international review of scientific and commercial aspects,” Int. J. Agric. Biol. Eng., vol. 5, no. 3, pp. 1–9, Sep. 2012, doi: 10.25165/IJABE.V5I3.599.
(20) J. M. Bos, B. Bovenkerk, P. H. Feindt, and Y. K. van Dam, “The Quantified Animal: Precision Livestock Farming and the Ethical Implications of Objectification,” Food Ethics 2018 21, vol. 2, no. 1, pp. 77–92, Nov. 2018, doi: 10.1007/S41055-018-00029-X.
(21) D. Engster, “Care ethics and animal welfare,” J. Soc. Philos., vol. 37, no. 4, pp. 521–536, Dec. 2006, doi: 10.1111/J.1467-9833.2006.00355.X.
(22) E. Rowe, M. S. Dawkins, and S. G. Gebhardt-Henrich, “A Systematic Review of Precision Livestock Farming in the Poultry Sector: Is Technology Focussed on Improving Bird Welfare?,” Anim. 2019, Vol. 9, Page 614, vol. 9, no. 9, p. 614, Aug. 2019, doi: 10.3390/ANI9090614.
(23) J. Astill, R. A. Dara, E. D. G. Fraser, B. Roberts, and S. Sharif, “Smart poultry management: Smart sensors, big data, and the internet of things,” Comput. Electron. Agric., vol. 170, p. 105291, Mar. 2020, doi: 10.1016/J.COMPAG.2020.105291.
(24) T. S. Gunawan, M. F. Sabar, H. Nasir, M. Kartiwi, and S. M. A. Motakabber, “Development of Smart Chicken Poultry Farm using RTOS on Arduino,” 2019 IEEE Int. Conf. Smart Instrumentation, Meas. Appl., pp. 1–5, Aug. 2019, doi: 10.1109 / ICSIMA47653.2019.9057310.
(25) H. Mansor, A. N. Azlin, T. S. Gunawan, M. Md Kamal, and A. Z. Hashim, “Development of Smart Chicken Poultry Farm,” Indones. J. Electr. Eng. Comput. Sci., vol. 10, no. 2, pp. 498–505, May 2018, doi: 10.11591/IJEECS.V10.I2.PP498-505.
(26) A. Yaseer and H. Chen, “A Review of Sensors and Machine Learning in Animal Farming,” 2021 IEEE 11th Annu. Int. Conf. CYBER Technol. Autom. Control. Intell. Syst., pp. 747–752, Jul. 2021, doi: 10.1109 / CYBER53097.2021.9588295.
(27) D. F. Klotz et al., “Estimating and tuning adaptive action plans for the control of smart interconnected poultry condominiums,” Expert Syst. Appl., vol. 187, p. 115876, Jan. 2022, doi: 10.1016/J.ESWA.2021.115876.
(28) A. Diez-Olivan, X. Averós, R. Sanz, B. Sierra, and I. Estevez, “Quantile regression forests-based modeling and environmental indicators for decision support in broiler farming,” Comput. Electron. Agric., vol. 161, pp. 141–150, Jun. 2019, doi: 10.1016/J.COMPAG.2018.03.025.
(29) H. Pu, J. Lian, and M. Fan, “Automatic Recognition of Flock Behavior of Chickens with Convolutional Neural Network and Kinect Sensor,” https://doi.org/10.1142/S0218001418500234, vol. 32, no. 7, Mar. 2018, doi: 10.1142/S0218001418500234.
(30) D. F. Pereira, F. A. A. Lopes, L. R. A. G. Filho, D. D. A. Salgado, and M. M. Neto, “Cluster index for estimating thermal poultry stress (gallus gallus domesticus),” Comput. Electron. Agric., vol. 177, p. 105704, Oct. 2020, doi: 10.1016/J.COMPAG.2020.105704.
(31) A. Peña Fernández et al., “Real-time monitoring of broiler flock’s welfare status using camera-based technology,” Biosyst. Eng., vol. 173, pp. 103–114, Sep. 2018, doi: 10.1016/J.BIOSYSTEMSENG.2018.05.008.
(32) M. Kashiha, A. Pluk, C. Bahr, E. Vranken, and D. Berckmans, “Development of an early warning system for a broiler house using computer vision,” Biosyst. Eng., vol. 116, no. 1, pp. 36–45, Sep. 2013, doi: 10.1016/J.BIOSYSTEMSENG.2013.06.004.
(33) C. Fang, T. Zhang, H. Zheng, J. Huang, and K. Cuan, “Pose estimation and behavior classification of broiler chickens based on deep neural networks,” Comput. Electron. Agric., vol. 180, p. 105863, Jan. 2021, doi: 10.1016/J.COMPAG.2020.105863.
(34) J. Khairunissa, S. Wahjuni, I. R. H. Soesanto, and W. Wulandari, “Detecting Poultry Movement for Poultry Behavioral Analysis using the Multi-Object Tracking (MOT) Algorithm,” Proc. 8th Int. Conf. Comput. Commun. Eng. ICCCE 2021, pp. 265–268, Jun. 2021, doi: 10.1109/ICCCE50029.2021.9467144.
(35) X. Zhuang, M. Bi, J. Guo, S. Wu, and T. Zhang, “Development of an early warning algorithm to detect sick broilers,” Comput. Electron. Agric., vol. 144, pp. 102–113, Jan. 2018, doi: 10.1016/J.COMPAG.2017.11.032.
(36) C. Fang, J. Huang, K. Cuan, X. Zhuang, and T. Zhang, “Comparative study on poultry target tracking algorithms based on a deep regression network,” Biosyst. Eng., vol. 190, pp. 176–183, Feb. 2020, doi: 10.1016/J.BIOSYSTEMSENG.2019.12.002.
(37) I. Fontana et al., “Sound analysis to model weight of broiler chickens,” Poult. Sci., vol. 96, no. 11, pp. 3938–3943, Nov. 2017, doi: 10.3382/PS/PEX215.
(38) L. Carpentier, E. Vranken, D. Berckmans, J. Paeshuyse, and T. Norton, “Development of sound-based poultry health monitoring tool for automated sneeze detection,” Comput. Electron. Agric., vol. 162, pp. 573–581, Jul. 2019, doi: 10.1016/J.COMPAG.2019.05.013.
(39) N. Jakovljevic, N. Maljkovic, D. Miskovic, P. Knezevic, and V. Delic, “A Broiler Stress Detection System Based on Audio Signal Processing,” 27th Telecommun. Forum, TELFOR 2019, Nov. 2019, doi: 10.1109/TELFOR48224.2019.8971336.
(40) “Vetmeduni : ECPLF.” https://www.vetmeduni.ac.at/ecplf2022/ecplf (accessed Feb. 15, 2022).
(41) “EA-PLF | European Association for Precisione Livestock Farming.” https://www.eaplf.eu/ (accessed Feb. 15, 2022).