Comunicación Molecular: Retos y oportunidades

##plugins.themes.bootstrap3.article.main##

Mayteé Zambrano
Enviado: Sep 19, 2016
Publicado: Sep 20, 2016

Resumen

La comunicación molecular permite el envío de información a través de moléculas u otras partículas a escala de nanómetros a micrómetros. La misma posee limitaciones como: degradación de las partículas en el medio acuoso durante la propagación y retardo de la señal de información recibida debido al movimiento browniano de las partículas. En este artículo se describen los fundamentos más relevantes de un sistema de comunicación molecular incluyendo retos, limitaciones y aplicaciones en la que esta tecnología tendría un impacto relevante. Se presentan los aspectos significativos del canal de comunicaciones, tipos de modulación y herramientas de modelaje de sistemas de comunicación molecular.

Palabras clave

comunicación molecular, difusión, modulación basada en concentración de partículas, Nano-dispositivos, señales bioquímicas.

Descargas

La descarga de datos todavía no está disponible.

##plugins.themes.bootstrap3.article.details##

Cómo citar
Zambrano, M. (2016). Comunicación Molecular: Retos y oportunidades. Prisma Tecnológico, 6(1), 13-18. Recuperado a partir de https://revistas.utp.ac.pa/index.php/prisma/article/view/605
Biografía del autor/a

Mayteé Zambrano, Universidad Tecnológica de Panamá

Facultad de Ingeniería Eléctrica

Citas

(1) Akyildiz, I. F., Brunetti, F., & Blázquez, C. Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260-2279, 2008.

(2) Jensen, K., Weldon, J., Garcia, H., & Zettl, A. Nanotube radio. Nano letters, 7(11), 3508-3511, 2007.

(3) Nakano, T., Eckford, A. W., & Haraguchi, T. Molecular communication. Cambridge University Press, 2013.

(4) L. You, R. S. Cox, R. Weiss, and F. H. Arnold, “Programmed population control by cell-cell communication and regulated killing,”Nature, vol. 428, pp. 868–871, Apr. 2004.

(5) S. Basu, Y. Gerchman, C. H. Collins, F. H. Arnold, and R. Weiss, “A synthetic multicellular system for programmed pattern formation,”Nature, vol. 434, pp. 1130–1134, Apr. 2005.

(6) M. J. Doktycz and M. L. Simpson, “Nano-enabled synthetic biology,” Wiley Mol. Syst. Biol., vol. 3, July 2007.

(7) P. Siuti, J. Yazbek, and T. K. Lu, “Synthetic circuits integrating logic and memory in living cells,” Nat. Biotechnol., vol. 31, pp. 448–452, May 2013.

(8) N. Farsad, H. B. Yilmaz, A. Eckford, C. B. Chae, and W. Guo. A Comprehensive Survey of Recent Advancements in Molecular Communication. Oct 2014, arXiv preprint arXiv:1410.4258.

(9) H. C. Berg, Random walks in biology. Princeton, N.J.: Princeton University Press, 1993.

(10) T. Nakano, T. Suda, T. Koujin, T. Haraguchi, and Y. Hiraoka, “Molecular communication through gap junction channels,” in Trans. Comput. Syst. Biol. X (C. Priami, F. Dressler, O. B. Akan, and A. Ngom, eds.), vol. 5410 of Springer Lect. Notes Comput. Sci., pp. 81–99, 2008.

(11) M. Pierobon and I. F. Akyildiz, “A physical end-to-end model for molecular communication in nanonetworks,” IEEE J. Sel. Areas Commun., vol. 28, pp. 602–611, May 2010.

(12) M. Pierobon and I. F. Akyildiz, “Capacity of a diffusion-based molecular communication system with channel memory and molecular noise,” IEEE Trans. Inf. Theory, vol. 59, pp. 942–954, Feb. 2013.

(13) D. Hymel and B. R. Peterson, “Synthetic cell surface receptors for delivery of therapeutics and probes,” Elsevier Adv. Drug Deliv. Rev., vol. 64, pp. 797–810, June 2012.

(14) H. Shankaran, H. Resat, and H. S. Wiley, “Cell surface receptors for signal transduction and ligand transport: A design principles study,” PLoS Comput. Biol., vol. 3, p. e101, June 2007.

(15) S. Das, A. J. Gates, H. A. Abdu, G. S. Rose, C. A. Picconatto, and J. C. Ellenbogen, “Designs for ultra-tiny, special-purpose nanoelectronic circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, pp. 2528–2540, Nov. 2007.

(16) M. S. Kuran, H. B. Yilmaz, and T. Tugcu, I. F. Akyildiz, “Modulation Techniques for Communication via Diffusion in Nannonetworks” in Proc. Int. Conf. on Communications (ICC), pp. 1-5, June 2011.

(17) Pudasaini, Subodh, Seokjoo Shin, and Kyung Sup Kwak. "Robust Modulation Technique for Diffusion-based Molecular Communication in Nanonetworks." arXiv preprint arXiv:1401.3938 (2014).

(18) B. Tepekule, A. E. Pusane, H. B. Yilmaz, and T. Tugcu, “A novel modulation technique in diffusion based molecular communication and its performance analysis,” in Proc. IEEE Signal Process. and Commun. Appl. Conf. (SIU), pp. 1110–1113, 2014.

(19) N.-R. Kim and C.-B. Chae, “Novel modulation techniques using isomers as messenger molecules for nano communication networks via diffusion,” IEEE J. Sel. Areas Commun., vol. 31, pp. 847–856, Dec. 2013.

(20) D. Kilinc and O. B. Akan, “Receiver design for molecular communication,” IEEE J. Sel. Areas Commun., vol. 31, pp. 705–714, Dec. 2013.

(21) T. M. Cover and J. A. Thomas, Elements of Information Theory 2nd Edition. Wiley-Interscience, second ed., July 2006.

(22) Pierobon, M., & Akyildiz, I. F. Capacity of a diffusion-based molecular communication system with channel memory and molecular noise. Information Theory, IEEE Transactions on, 59(2), 942-954, 2013.

(23) A. W. Eckford, “Nanoscale communication with brownian motion,” in Proc. Conf. on Inf. Sci. and Syst. (CISS), (Baltimore, MD), pp. 160–
165, 2007.

(24) H. B. Yilmaz, A. C. Heren, T. Tugcu, and C.-B. Chae, “Three dimensional channel characteristics for molecular communications with an absorbing receiver,” IEEE Commun. Lett., vol. 18, pp. 929–932, June 2014.

(25) B. Atakan and O. B. Akan, “Deterministic capacity of information flow in molecular nanonetworks,” Elsevier Nano Commun. Netw., vol. 1, pp. 31–42, Mar. 2010.

(26) A. Einolghozati, M. Sardari, and F. Fekri, “Design and analysis of wireless communication systems using diffusion-based molecular communication among bacteria,” IEEE Trans. Wireless Commun., vol. 12, pp. 6096–6105, Dec. 2013.

(27) D. Arifler, “Capacity analysis of a diffusion-based short-range molecular nano-communication channel,” Elsevier Comput. Netw., vol. 55, pp. 1426–1434, Apr. 2011

(28) A. C. Heren, M. S. Kuran, H. B. Yilmaz, and T. Tugcu, “Channel capacity of calcium signalling based on inter-cellular calcium waves in astrocytes,” in Proc. IEEE Int. Conf. on Commun. Workshops (ICC WKSHPS), pp. 792–797, 2013.

(29) D. Kilinc and O. B. Akan, “An information theoretical analysis of nanoscale molecular gap junction communication channel between cardiomyocytes,” IEEE Trans. Nanotechnol., vol. 12, pp. 129–136, Mar 2013.

(30) P. C. Yeh, K. C. Chen, Y. C. Lee, , L. S. Meng and others. “A new frontier of wireless communication theory: diffusion-based molecular communications”. IEEE Wireless Communications, 19(5), 28.

(31) Akkaya, A., & Tugcu, T. dMCS: distributed molecular communication simulator. In Proceedings of the 8th International Conference on Body Area Networks (pp. 468-471), Sept 2013.

(32) Gul, E., Atakan, B., & Akan, O. B. NanoNS: A nanoscale network simulator framework for molecular communications. Nano Communication Networks, 1(2), 138-156, 2010.

(33) Llatser, I., Demiray, D., Cabellos-Aparicio, A., Altilar, D. T., & Alarcón, E. N3Sim: Simulation framework for diffusion-based molecular communication nanonetworks. Simulation Modelling Practice and Theory, 42, 210-222, 2014.

(34) Yilmaz, H. B., & Chae, C. B. Simulation study of molecular communication systems with an absorbing receiver: Modulation and ISI mitigation techniques. Simulation Modelling Practice and Theory, 49, 136-150, 2014.

(35) Wei, G., Bogdan, P., & Marculescu, R. Efficient modeling and simulation of bacteria-based nanonetworks with bnsim. Selected Areas in Communications, IEEE Journal on, 31(12), 868-878, 2013.